| 研究生: |
招文軒 Chio, Man-Hin |
|---|---|
| 論文名稱: |
以赤鐵礦作為載氧體之化學迴圈氧化還原反應及能量之熱力學分析 Redox reactions and energy analysis in chemical looping using hematite as an oxygen carrier: A thermodynamic approach |
| 指導教授: |
張智華
Chang, Chih-Hua |
| 共同指導教授: |
陳維新
Chen, Wei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 化學迴圈 、熱力學分析 、甲烷 、赤鐵礦 、二氧化碳 、氧化還原度 |
| 外文關鍵詞: | Thermodynamic analysis, Methane, hematite, CO2 yield, redox degree |
| 相關次數: | 點閱:161 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
化學迴圈是二氧化碳捕捉與封存的其中一種技術,其特點為低耗能, 並可產生熱能以供發電使用, 同時不需要額外的耗能的單位就可得到接近100% 的二氧化碳。 根據不同的燃料和氧化氣體, 可得到不同的合成氣及反應氣體, 載氧體主要是以提供氧氣予燃料並經在兩反應器間循環。其反應器主要分為燃料反應器或還原反應器及氧化反應器, 反應器主要是以流動床和移動床兩種。由於化學迴圈的基本概念為氣化還原反應, 故熱力學分析可助於實際操作時作為參考。
本研究主要以赤鐵礦 (Fe2O3)作為載氧體, 以熱力學平衡的角度探討化學迴圈在900 °C 下甲烷作為燃料時的表現。 還原反應器中, 控制甲烷與赤鐵礦(碳/鐵)的比值為一重要參數, 而在氧化反應器中, 氧氣與赤鐵礦(氧/鐵)的比值作為另一控制參數,本研究以五種不同的碳/鐵比值(1/15, 1/12, 1/10, 1/8 和 1/5) 及五種不同的氧/鐵比值(1.5,0.3, 0.2, 0.18 和 0.15) 作為基準, 根據這些操作參數所得到的反應器的氧化還原程度, 找出最佳的操作條件。
結果表現較高的碳/鐵比值會需要較多的循環才能夠達到平衡, 在碳/鐵比值< 1/5的情況下, 其只需要5個循環左右就可以達到平衡狀態。而不同的氧/鐵的比值也是明顯的影響循環次數,在五種的碳鐵比值中,其甲烷的轉化率幾乎都能達到接近100%的程度,其中最多的二氧化碳和水蒸氣產生主要落到碳/鐵比值為1/15 的時候,隨着碳/鐵比值的增加,此兩種氣體的產生呈現減少的趨勢。在較低碳/鐵比值的時候,其主要產物為Fe3O4,在高的碳/鐵比值中,更高還原態的鐵產物更容易產生。碳/鐵比值的增加同時也伴隨着更多的一氧化碳以及氫氣的生成同時其耗氧程度會變高。 積碳現象在高碳/鐵比值下會更容易產生。
在不同的氧/鐵比值中,其最高的產生為二氧化碳與水蒸氣,其產生會隨着氧/鐵比值的減少而減少。其積碳在較少氧氣的情況下更容易產生。根據能量的分析, 其焓在還原以及氧化的反應器中皆為吸熱反應 (除了碳/鐵比值為1/15時),表示在化學迴圈的過程中,系統維持吸熱的狀態,根據氧化還原度的結果,最佳的操作條件為碳/鐵比值為1/12,而氧/鐵比值為0.18以及溫度在900度,在此條件下,反應器皆呈現放熱行為。
Chemical looping is a promise technology in carbon dioxide capture and storage, which is an almost less energy and provide heat during the process. This technology can get pure carbon dioxide by condense the water vapor of the outlet gas, depend on what fuel and oxygen carriers (OCs) used, there will be different syngas and outlet gas release. OCs is an import role in chemical looping because it can transfer oxygen to the fuel and recycle between reduction and oxidation two reactors. Generally, the reactor is fluidized bed or move bed two kind, since the basic concept of the chemical looping is redox reaction in the reactor, so that thermodynamic analysis is helpful reference to operator reactor.
This study use hematite as oxygen carrier (OC) with chemical looping process, methane as reduction gas and air as oxidation gas at 900 °C. Five different M/H ratio (1/15, 1/12, 1/10, 1/8 and 1/5) and O/H ratio (1.5, 0.3, 0.2, 0.18 and 0.15) on iron oxide redox reaction were examined. In addition, a redox degree of the reactors was defined.
The results showed that higher M/H ratio needed more cycles to achieve equilibrium state and O/H ratio also show that it is significantly relate to cycle number. The maximum CO2 and H2O yield was located at M/H=1/15, but the yield of these two compounds decreased with an increase of M/H ratio. The demonstrate species would be Fe3O4 at lower M/H ratio, the further reduced stage iron oxides will show with higher M/H ratio, but accompany CO and H2 generated. The O2 consumption in the air reactor was decreased with increasing M/H ratio. The overall CH4 conversion of the five M/H ratio almost remained at 100%, revealing that the conversion did not relate to M/H ratio and O/H ratio. Carbon formation is also presented in this study, the yield of carbon deposition is direct proportion to M/H ratio. Under five O/H ratios with M/H=1/12, the maximum CO2 and H2O yield are achieved in O/H≥0.8, similar with M/H ratio result, the gas yield is decrease when O/H is reduced. Our results showed that the less oxygen input to the reactor, the more carbon formation. The enthalpy of the reactors reveals that the behavior of reactors was endothermic (expect M/H=1/5). To find the optimal parameters, the redox degree was introduced in this study and the results showed that reactor should be controlled at M/H=1/12 and O/H=0.18 where temperature is 900 °C, the enthalpy of this condition showed endothermic behavior at both reactor.
Abad, A., T. Mattisson, A. Lyngfelt and M. Johansson (2007). "The use of iron oxide as oxygen carrier in a chemical-looping reactor." Fuel 86(7): 1021-1035.
Abad, A., T. Mattisson, A. Lyngfelt and M. Rydén (2006). "Chemical-looping combustion in a 300W continuously operating reactor system using a manganese-based oxygen carrier." Fuel 85(9): 1174-1185.
Adánez, J., L. F. de Diego, F. García-Labiano, P. Gayán, A. Abad and J. M. Palacios (2004). "Selection of Oxygen Carriers for Chemical-Looping Combustion." Energy & Fuels 18(2): 371-377.
Chen, L., J. Bao, L. Kong, M. Combs, H. S. Nikolic, Z. Fan and K. Liu (2016). "The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion." Applied Energy 184: 9-18.
Chen, W.-H., C.-L. Hsu and S.-W. Du (2015). "Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace." Energy 86: 758-771.
Chen, W.-H., M.-R. Lin, A. B. Yu, S.-W. Du and T.-S. Leu (2012). "Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast furnace." International Journal of Hydrogen Energy 37(16): 11748-11758.
Cheng, X., K. Li, H. Wang, X. Zhu, Y. Wei, Z. Li, M. Zheng and D. Tian (2017). "Chemical looping combustion of methane in a large laboratory unit: Model study on the reactivity and effective utilization of typical oxygen carriers." Chemical Engineering Journal 328: 382-396.
Chisalita, D.-A. and A.-M. Cormos (2018). "Dynamic simulation of fluidized bed chemical looping combustion process with iron based oxygen carrier." Fuel 214: 436-445.
Cho, P., T. Mattisson and A. Lyngfelt (2004). "Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion." Fuel 83(9): 1215-1225.
Cho, P., T. Mattisson and A. Lyngfelt (2005). "Carbon Formation on Nickel and Iron Oxide-Containing Oxygen Carriers for Chemical-Looping Combustion." Industrial & Engineering Chemistry Research 44(4): 668-676.
Cormos, C.-C. (2017). "Chemical Looping with Oxygen Uncoupling (CLOU) concepts for high energy efficient power generation with near total fuel decarbonisation." Applied Thermal Engineering 112: 924-931.
de Diego, L. F., F. Garcı́a-Labiano, J. Adánez, P. Gayán, A. Abad, B. M. Corbella and J. Marı́a Palacios (2004). "Development of Cu-based oxygen carriers for chemical-looping combustion." Fuel 83(13): 1749-1757.
Deshpande, N., A. Majumder, L. Qin and L. S. Fan (2015). "High-Pressure Redox Behavior of Iron-Oxide-Based Oxygen Carriers for Syngas Generation from Methane." Energy & Fuels 29(3): 1469-1478.
Galinsky, N. L., A. Shafiefarhood, Y. Chen, L. Neal and F. Li (2015). "Effect of support on redox stability of iron oxide for chemical looping conversion of methane." Applied Catalysis B: Environmental 164: 371-379.
García-Labiano, F., J. Adánez, L. F. de Diego, P. Gayán and A. Abad (2006). "Effect of Pressure on the Behavior of Copper-, Iron-, and Nickel-Based Oxygen Carriers for Chemical-Looping Combustion." Energy & Fuels 20(1): 26-33.
Gayán, P., I. Adánez-Rubio, A. Abad, L. F. de Diego, F. García-Labiano and J. Adánez (2012). "Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process." Fuel 96: 226-238.
Go, K. S., S. R. Son, S. D. Kim, K. S. Kang and C. S. Park (2009). "Hydrogen production from two-step steam methane reforming in a fluidized bed reactor." International Journal of Hydrogen Energy 34(3): 1301-1309.
Graschinsky, C., P. Giunta, N. Amadeo and M. Laborde (2012). "Thermodynamic analysis of hydrogen production by autothermal reforming of ethanol." International Journal of Hydrogen Energy 37(13): 10118-10124.
Gu, H., L. Shen, S. Zhang, M. Niu, R. Sun and S. Jiang (2018). "Enhanced fuel conversion by staging oxidization in a continuous chemical looping reactor based on iron ore oxygen carrier." Chemical Engineering Journal 334: 829-836.
Hossain, M. M. and H. I. de Lasa (2008). "Chemical-looping combustion (CLC) for inherent CO2 separations—a review." Chemical Engineering Science 63(18): 4433-4451.
Huang, Z., Z. Deng, D. Chen, F. He, S. Liu, K. Zhao, G. Wei, A. Zheng, Z. Zhao and H. Li (2017). "Thermodynamic analysis and kinetic investigations on biomass char chemical looping gasification using Fe-Ni bimetallic oxygen carrier." Energy 141: 1836-1844.
Ishida, M. and H. Jin (1996). "A Novel Chemical-Looping Combustor without NOx Formation." Industrial & Engineering Chemistry Research 35(7): 2469-2472.
Ishida, M. and H. Jin (1997). "CO2 recovery in a power plant with chemical looping combustion." Energy Conversion and Management 38: S187-S192.
Jerndal, E., T. Mattisson and A. Lyngfelt (2006). "Thermal Analysis of Chemical-Looping Combustion." Chemical Engineering Research and Design 84(9): 795-806.
Jin, H. and M. Ishida (2002). "Reactivity Study on Natural-Gas-Fueled Chemical-Looping Combustion by a Fixed-Bed Reactor." Industrial & Engineering Chemistry Research 41(16): 4004-4007.
Johansson, E., T. Mattisson, A. Lyngfelt and H. Thunman (2006). "A 300W laboratory reactor system for chemical-looping combustion with particle circulation." Fuel 85(10): 1428-1438.
Johansson, M., T. Mattisson and A. Lyngfelt (2006). "Creating a Synergy Effect by Using Mixed Oxides of Iron- and Nickel Oxides in the Combustion of Methane in a Chemical-Looping Combustion Reactor." Energy & Fuels 20(6): 2399-2407.
Leion, H., E. Jerndal, B.-M. Steenari, S. Hermansson, M. Israelsson, E. Jansson, M. Johnsson, R. Thunberg, A. Vadenbo, T. Mattisson and A. Lyngfelt (2009). "Solid fuels in chemical-looping combustion using oxide scale and unprocessed iron ore as oxygen carriers." Fuel 88(10): 1945-1954.
Leion, H., T. Mattisson and A. Lyngfelt (2007). "The use of petroleum coke as fuel in chemical-looping combustion." Fuel 86(12): 1947-1958.
Leion, H., T. Mattisson and A. Lyngfelt (2008). "Solid fuels in chemical-looping combustion." International Journal of Greenhouse Gas Control 2(2): 180-193.
Linderholm, C., A. Abad, T. Mattisson and A. Lyngfelt (2008). "160h of chemical-looping combustion in a 10kW reactor system with a NiO-based oxygen carrier." International Journal of Greenhouse Gas Control 2(4): 520-530.
Liu, L. and M. R. Zachariah (2013). "Enhanced Performance of Alkali Metal Doped Fe2O3 and Fe2O3/Al2O3 Composites As Oxygen Carrier Material in Chemical Looping Combustion." Energy & Fuels 27(8): 4977-4983.
Ma, Z., R. Xiao and L. Chen (2017). "Kinetics of sintering induced surface area decay of iron oxide in the reduction process of chemical looping combustion." Fuel Processing Technology 168: 20-26.
Mattisson, T., F. García-Labiano, B. Kronberger, A. Lyngfelt, J. Adánez and H. Hofbauer (2007). "Chemical-looping combustion using syngas as fuel." International Journal of Greenhouse Gas Control 1(2): 158-169.
Mattisson, T., M. Johansson and A. Lyngfelt (2004). "Multicycle Reduction and Oxidation of Different Types of Iron Oxide ParticlesApplication to Chemical-Looping Combustion." Energy & Fuels 18(3): 628-637.
Mattisson, T., M. Johansson and A. Lyngfelt (2006). "The use of NiO as an oxygen carrier in chemical-looping combustion." Fuel 85(5): 736-747.
Mattisson, T., A. Järdnäs and A. Lyngfelt (2003). "Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and OxygenApplication for Chemical-Looping Combustion." Energy & Fuels 17(3): 643-651.
Mattisson, T. and A. Lyngfelt (2001). "Capture of CO2 using chemical-looping combustion." Scandinavian-Nordic Section of Combustion Institute: 163-168.
Mattisson, T., A. Lyngfelt and P. Cho (2001). "The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2." Fuel 80(13): 1953-1962.
Metz, B. (2005). Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change, Cambridge University Press.
Monazam, E. R., R. W. Breault and R. Siriwardane (2014). "Kinetics of Magnetite (Fe3O4) Oxidation to Hematite (Fe2O3) in Air for Chemical Looping Combustion." Industrial & Engineering Chemistry Research 53(34): 13320-13328.
Monazam, E. R., R. W. Breault, R. Siriwardane, G. Richards and S. Carpenter (2013). "Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: A global mechanism." Chemical Engineering Journal 232: 478-487.
Nandy, A., C. Loha, S. Gu, P. Sarkar, M. K. Karmakar and P. K. Chatterjee (2016). "Present status and overview of Chemical Looping Combustion technology." Renewable and Sustainable Energy Reviews 59: 597-619.
Niu, X., L. Shen, S. Jiang, H. Gu and J. Xiao (2016). "Combustion performance of sewage sludge in chemical looping combustion with bimetallic Cu–Fe oxygen carrier." Chemical Engineering Journal 294: 185-192.
Pachauri, R. K., M. R. Allen, V. R. Barros, J. Broome, W. Cramer, R. Christ, J. A. Church, L. Clarke, Q. Dahe and P. Dasgupta (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, IPCC.
Saha, C. and S. Bhattacharya (2011). "Comparison of CuO and NiO as oxygen carrier in chemical looping combustion of a Victorian brown coal." International Journal of Hydrogen Energy 36(18): 12048-12057.
Shafiefarhood, A., A. Stewart and F. Li (2015). "Iron-containing mixed-oxide composites as oxygen carriers for Chemical Looping with Oxygen Uncoupling (CLOU)." Fuel 139: 1-10.
Shen, L., J. Wu, J. Xiao, Q. Song and R. Xiao (2009). "Chemical-Looping Combustion of Biomass in a 10 kWth Reactor with Iron Oxide As an Oxygen Carrier." Energy & Fuels 23(5): 2498-2505.
Shulman, A., E. Cleverstam, T. Mattisson and A. Lyngfelt (2011). "Chemical – Looping with oxygen uncoupling using Mn/Mg-based oxygen carriers – Oxygen release and reactivity with methane." Fuel 90(3): 941-950.
Solomon, S., G.-K. Plattner, R. Knutti and P. Friedlingstein (2009). "Irreversible climate change due to carbon dioxide emissions." Proceedings of the National Academy of Sciences.
Son, S. R. and S. D. Kim (2006). "Chemical-Looping Combustion with NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Reactor with Double Loops." Industrial & Engineering Chemistry Research 45(8): 2689-2696.
Wang, B., R. Yan, D. H. Lee, D. T. Liang, Y. Zheng, H. Zhao and C. Zheng (2008). "Thermodynamic Investigation of Carbon Deposition and Sulfur Evolution in Chemical Looping Combustion with Syngas." Energy & Fuels 22(2): 1012-1020.
Yang, Z., W. Ding, Y. Zhang, X. Lu, Y. Zhang and P. Shen (2010). "Catalytic partial oxidation of coke oven gas to syngas in an oxygen permeation membrane reactor combined with NiO/MgO catalyst." International Journal of Hydrogen Energy 35(12): 6239-6247.
Zafar, Q., A. Abad, T. Mattisson, B. Gevert and M. Strand (2007). "Reduction and oxidation kinetics of Mn3O4/Mg–ZrO2 oxygen carrier particles for chemical-looping combustion." Chemical Engineering Science 62(23): 6556-6567.
Zafar, Q., T. Mattisson and B. Gevert (2006). "Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4." Energy & Fuels 20(1): 34-44.
Zhang, Y., E. Doroodchi and B. Moghtaderi (2014). "Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2." Applied Energy 113: 1916-1923.
校內:立即公開