| 研究生: |
嚴云懋 Yan, Yun-Mao |
|---|---|
| 論文名稱: |
電漿化學氣相沉積噴氣頭性能之流場模擬 Showerhead Flow Field Simulation for Plasma Enhanced Chemical Vapor Deposition Process |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 噴氣頭 、電漿化學氣相沉積 、數值模擬 |
| 外文關鍵詞: | Showerhead, Plasma Enhanced Chemical Vapor Deposition (PECVD), Numerical Simulation |
| 相關次數: | 點閱:87 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著微電子工業發展及快速進步速度的趨勢下,各項製程技術的研究也就愈重要,採用模擬方法可以改善設備,減少成本與時間的花費,在半導體製程中電漿增強化學氣相沉積是個重要設備,本研究是以數值方法探討電漿增強化學氣相沉積(PECVD)沉積時,反應器內的流場之現象,在數值模擬方法上,描述PECVD反應器流場傳輸現象的統御方程式。
本研究就PECVD 技術之單一晶元片式(single wafer)反應器流場分佈狀態進行分析,比較各種幾何形狀的噴氣頭,對流場均勻性的影響。反應中採用冷壁式(cold wall)反應器腔體之流場,假設空間為2維。除此之外,在本論文也有討論噴氣頭擋板對流場的影響。最後,將噴氣頭比擬成多孔性介質,找出其滲透性和阻力系數,使其成為等效流場,以便日後運算3維流場可以減少大量的網格運算,且更接近真實情況。
With the rapid progress in microelectronics industrial development and the trend rate, the study of process technology the more important, the use of simulations to improve facilities, reduce costs and time spent in the semiconductor manufacturing process for plasma enhanced chemical vapor deposition is an important device, this study used the numerical method of plasma enhanced chemical vapor deposition (PECVD) deposition, the reactor flow field phenomenon, the numerical simulation method, described in PECVD reactor flow governing transport phenomena equation.
In this study, PECVD technology on a single wafer type reactor flow distribution analysis and comparison of various geometrical shapes of showerhead, the flow field uniformity of the reaction in with the cold wall reactor chamber body flow fields, assuming a 2-dimensional space, and the flow field of the board, and finally, the showerhead match into porous media, to identify its permeability and drag coefficient, making it the equivalent flow in order to future computing three-dimensional flow field can reduce the number of grid computing, and more close to reality.
[1] Y. Kusumoto, T. Hayashi, and S. Komiya, “Numerical Analysis of the Transport Phenomena in MOCVD Process,” Japanese Journal of Applied Physics, Vol. 24, No. 5, pp. 620-625, 1985.
[2] G. Evans and K. Grei, “Effects of Boundary Conditions on the Flow and Heat Transfer in Rotating Disk Chemical Vapor Deposition Reactor,” Numerical Heat Transfer, Vol. 12, pp. 243-252, 1987.
[3] N. Shibata and S. Zembutsu, “A Boundary Layer Model for the MOCVD Process in a Vertical Cylinder Reactor,” Japanese Journal of Applied Physics, Vol. 26, No. 9, pp. 1416-1421, 1987.
[4] W.Y. Chung, “Modeling of Cu Thin Film Growth by MOCVD Process in A Vertical Reactor,” Journal of Crystal Growth, Vol. 180, pp. 691-697, 1997.
[5] D.I. Fotiadis, S. Kieda, and K.F. Jensen, “Transport Phenomena in Vertical Reactors for Metalorganic Vapor Phase Epitaxy,” Journal of Crystal Growth, Vol. 102, pp. 441-470, 1990.
[6] C.R. Kleijn, “On the Modeling of Transport Phenomena in Chemical Vapor Deposition and Its Use in Reactor Design and Process Optimization,” Thin solid Films, pp. 47-53, 1991.
[7] Z. Nami, A. Erbil, and G.S. May, “Reactor Design Considerations for MOCVD Growth of Thin Films,” IEEE Transactions on Semiconductor Manufacturing, Vol. 10, No. 2, May, pp. 295-306, 1997.
[8] Heru Setyawan, Manabu Shimada, Kenji Ohtsuka, and Kikuo kuyama, “Visualization and Numerical Simulation of Fine Particle Transport in a Low-pressure Parallel Plate Chemical Vapor Deposition Reactor,” Chemical Engineering Science 57, pp. 497–506, 2002.
[9] Ana Neilde R. Da Silva and Nilton I. Morimoto, “Gas Flow Simulation in PECVD Reactor,” Nanotech, Vol. 1, pp. 434–437, 2003.
[10] 高柏浩, “多晶矽快速熱化學氣相沉積設備之參數與流場分析,“ 國立中山大學機械與機電工程研究所碩士論文, 2003.
[11] G. Luo, S.P. Vanka, and N. Glumac, “Fluid Flow and Transport Processes in a Large Area Atmospheric Pressure Stagnation Flow CVD Reactor for Deposition of Thin Films,” International Journal of Heat and Mass Transfer, pp. 4979–4994, 2004.
[12] V. Kudriavtsev, V. Kolobov, K.Y. Lee, and K.W. Suh, “Computational Studies of Thermal Regimes of Commercial HDP-CVD Reactors,“ Proceedings 2nd Asian CVD Conference, Korea, 2002.
[13] P. Forchheimer, “Wasserbewegung Durch Boden,” Forschtlft Ver. D. Ing. Vol. 45, pp. 1782-1788, 1901.
[14] S. Ergun, “Fluid Flow through Packed Columns,” Chemical Engineering Progress, Vol. 48, pp. 89-94, 1952.
[15] K. Vafai and C.L. Tien, “Boundary and Inertia Effects on Flow and Heat Transfer in Porous media,” International Journal of Heat and Mass Transfer, Vol. 24, pp. 195-203, 1981.