| 研究生: |
周子超 Chou, Tzu-Chao |
|---|---|
| 論文名稱: |
心智圖之創意想法收斂組合推薦系統 MindMap Creative Ideas Combination Recommendations in Convergent Phase |
| 指導教授: |
王宗一
Wang, Tzong-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 創意發想 、心智圖 、K-means群集演算法 、推薦系統 |
| 外文關鍵詞: | Creativity, Mind map, K-means Algorithm, Recommendation System |
| 相關次數: | 點閱:154 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
個人創造力的發展在現在越來越受到重視,而創造力發展工具心智圖的使用也越來越普遍,心智圖是一種以圖像為基礎的結構化擴散性思考工具,擴散性思考發散出許多想法後,如何把想法收斂且搭配出具有創意的應用,一直是大家所思考的課題。為了幫助心智圖使用者收斂心智圖中的想法,本研究建立一個推薦系統並導入K-means群集分析演算法分析心智圖中的想法內容,並在想法收斂階段給予使用者不同想法收斂組合的推薦,讓使用者完成一個有創意的應用。本研究實驗的參與者是大學一年級37位選修程式設計課程的學生。實驗的題目是讓學生針對政府開放資料的主題進行創意發想。在創意發想階段,實驗組與控制組皆是使用心智圖做創意發想。之後在創意收斂階段,控制組學生自力從發想出的想法中挑選出覺得可以搭配成創意應用的想法組合,並寫出創意應用程式,而實驗組學生則在挑選過程中接受系統的推薦。針對實驗結果的挑選想法收斂組合和最後的創意應用來評比其創造力的流暢力、獨創力、變通力和精進力。結果顯示挑選想法收斂組合的創造力分數,實驗組的平均分數大於控制組,但是並沒有達到顯著差異,以至於最後的創意應用的創造力分數亦不顯著,但是透過此推薦系統的使用,確實可以幫助使用者篩選出有相關性的想法組合。
Personal creativity development is becoming more and more important. The use of Mind map tool creativity development becomes more and more common. Mind map is a divergent thinking tool based on texts and images, which can help users brainstorming to generate a lot of ideas in a short time. But how to converge the massive ideas and make a creative application out of them always remains as an issue for researchers and users. In order to help users of the mind map to converge their ideas, this study build a recommendation system that uses the K-means analysis algorithm to analyze the contents of the mind map ideas, cluster them into groups of closely related ideas, and recommend an appropriate group to the users when they are converging the ideas. To value the feasibility of the recommendation system, this study conducts an experiment, which recruits 37 student participants who enroll in a university programing design course. The subject of the experiment is to let students use mind map to generate ideas from some government's open information and, using these ideas, to make creative application programs. In the creative thinking stage, both the experimental group and the control group use the same mind map tool to brainstorm ideas, while in the converging stage for grouping ideas combination that can be used to create creative applications, the experimental group pick ideas that might be recommended by the system and the control group picks ideas only with free will. The evaluation criteria for the idea combinations and the creative applications include fluency, flexibility, originality and elaboration, indexes from the Torrance Tests of Creative Thinking (TTCT). The result of the experiment indicates that the experimental group, in general, performs better than the control group in the creativity idea combinations, but not to a significantly different level. The experimental group also performs better but not significantly than the control group in the final creative application programs. However, by the help of the recommendation system, users of the mind map tool can converge ideals more closely related for final productions.
中央研究院詞庫小組. (2003). 廣義知網中文詞知識庫. Retrieved from
http://rocling.iis.sinica.edu.tw/CKIP/conceptnet.htm
毛連塭. (2000). 創造力研究: 心理.
林明德. (2009). 一個應用於自然語言理解的知識工程工具. 國立雲林科技大學資訊工程研究所碩士班.
林燕琪. (2005). 心智圖法對國中學習障礙學生閱讀理解教學成效之研究. 指導教授: 吳訓生. 國立彰化師範大學特殊教育學系所碩士論文.
孫易新. (2002). 心智圖法: 多元知識管理系統. 進階篇. 耶魯國際文化出版.
陳宜惠, 呂瑞麟, & 黃政傑. (2013). 斷詞系統對於 Queried keywords 的影響. TANET 2013.
陳盈達. (2004). 課程之學習成效研究-以南投縣政府社區大學為例.
郭育麟. (2015). 基於心智圖之程式設計創意發想. 成功大學工程科學系學位論文, 1-71.
許素甘. (2004). 展出你的創意: 曼陀羅與心智繪圖的運用與教學. 心理出版社股份有限公司.
許菱祥. (1985). 中文文法. 大中國圖書公司.
董奇. (1995). 兒童創造力發展心理。台北:五南圖書公司.
錢秀梅. (2002). 心智圖法教學方案對身心障礙資源班學生創造力影響之研究. 國立臺北教育大學特殊教育學系學位論文, 1-243.
Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of personality and social psychology, 45(2), 357.
Busse, T. V., & Mansfield, R. S. (1980). Theories of the creative process: A review and a perspective. The Journal of Creative Behavior, 14(2), 91-132.
Buzan, T. (1984). Make the most of your mind. Simon and Schuster.
Cole, R. M. (1998). Clustering with genetic algorithms. University of Western Australia.
Davis, G. A. (1997). Identifying creative students and measuring creativity. Handbook of gifted education, 2, 269-281.
Fryer, M. (2006). Making a difference: A tribute to E. Paul Torrance from the United Kingdom. Creativity Research Journal, 18(1), 121-128.
Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Herlocker, J., & Riedl, J. (1999, July). Combining collaborative filtering with personal agents for better recommendations. In AAAI/IAAI (pp. 439-446).
Guilford, J. P. (1988). Some changes in the structure-of-intellect model. Educational and Psychological Measurement, 48(1), 1-4.
Hill, W., Stead, L., Rosenstein, M., & Furnas, G. (1995, May). Recommending and evaluating choices in a virtual community of use. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 194-201). ACM Press/Addison-Wesley Publishing Co.
Judd, D., McKinley, P. K., & Jain, A. K. (1998). Large-scale parallel data clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 871-876.
Kaufman, J. C., & Baer, J. (2006). Intelligent testing with Torrance. Creativity Research Journal, 18(1), 99-102.
Kaufman, L., & Rousseeuw, P. J. (1990). Partitioning around medoids (program pam). Finding groups in data: an introduction to cluster analysis, 68-125.
Kim, K. H. (2005). Cultural influence on creativity: The relationship between creativity and Confucianism. Roeper Review, 27(3), 186.
Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Riedl, J. (1997). GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM, 40(3), 77-87.
Lissitz, R. W., & Willhoft, J. L. (1985). A methodological study of the Torrance Tests of Creativity. Journal of Educational measurement, 22(1), 1-11.
MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 14, pp. 281-297).
McNee, S. M., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S. K., Rashid, A. M., ... & Riedl, J. (2002, November). On the recommending of citations for research papers. In Proceedings of the 2002 ACM conference on Computer supported cooperative work (pp. 116-125). ACM.
Mednick, S. (1962). The associative basis of the creative process. Psychological review, 69(3), 220.
Ng, R. T., & Han, J. (1994, September). E cient and E ective clustering methods for spatial data mining. In Proceedings of VLDB (pp. 144-155).
Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295). ACM.
Sharma, S. S. (1996). Applied multivariate techniques. John Wiley & Sons,.
Torrance, E. P., & Presbury, J. (1984). The criteria of success used in 242 recent experimental studies of creativity. Creative Child & Adult Quarterly.
Zhang, T., Ramakrishnan, R., & Livny, M. (1996, June). BIRCH: an efficient data clustering method for very large databases. In ACM Sigmod Record (Vol. 25, No. 2, pp. 103-114). ACM.