簡易檢索 / 詳目顯示

研究生: 郭慈穎
Kuo, Tzu-Ying
論文名稱: 南中國海沉積物鍶、釹、鉿、鉛同位素對北呂宋島弧地函交代換質作用之制約
Sr-Nd-Hf-Pb isotopic constraints on the role of South China Sea sediments in mantle wedge metasomatism beneath the North Luzon Arc
指導教授: 楊懷仁
Yang, Huai-Jen
李德春
Lee, Der-Chuen
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 95
中文關鍵詞: 地函交代換質作用鍶、釹、鉿、鉛同位素南中國海沉積物北呂宋島弧
外文關鍵詞: Sr-Nd-Hf-Pb isotope, North Luzon Arc, South China Sea sediments, Mantle metasomatism
相關次數: 點閱:106下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隱沒沉積物(Sediments)在地殼、地函交換中扮演著重要角色,包括對於聚合邊界之火成作用、地函異質性、地殼的組成及生長之瞭解都需經由隱沒沉積物之化學分析。然而,分佈於全球隱沒帶區沉積物之成份差異極巨,加上隱沒角度及隱沒板塊年齡亦會造成不同化學效應,因此,區域性隱沒沉積物對地函交代換質作用影響之深入研究更顯重要。本文以北呂宋島弧(North Luzon Arc, NLA)為研究區域,分析由海洋鑽探計畫(ODP)取得之38個南中國海沉積物的鍶、釹、鉿、鉛同位素及微量元素成份,進而探討南中國海沉積物在北呂宋島弧區域地函交代換質作用中所扮演的角色。
    利用沉積物、虧損地函及北呂宋島弧岩漿在此四個同位素系統中的相對位置,模擬三種地函交代換質作用之同位素特徵,分別為:(一) 地函受沉積物交代換質、(二) 地函受沉積物岩漿(sediment- derived melts)交代換質、(三) 地函受沉積物及隱沒海洋地殼岩漿(sediment- and AOC- derived melts)交代換質。第一種交代換質模式在鍶-釹及鍶-鉿同位素系統中之混合曲線落於地函陣列,無法解釋偏離之北呂宋島弧岩漿,在鉛同位素系統中,混合曲線之趨勢亦無法符合。第二種交代換質模式的模擬結果顯示,鍶-釹及鍶-鉿的分化在沉積物岩漿中較原始沉積物為明顯,使混合曲線更加偏離北呂宋島弧岩漿,此外,鉛、釹及鉿在沉積物與岩漿間的分配係數相近,故其同位素混合曲線與第一種交代換質模式非常相近而同樣無法解釋北呂宋島弧岩漿,鉛與鍶同位素系統中之混合曲線之趨勢亦無法解釋北呂宋島弧。第三種模擬結果顯示其混合曲線在大多數的同位素系統中最能符合北呂宋島弧岩漿之北島(N-islands)及南島(S-islands),模擬結果指示,當約0.0016-0.0032%殘餘鋯石自沉積物分出時,北島岩漿需加入50-80%碎屑沉積物源(detrital sediments)岩漿及20-50%海洋地殼源岩漿,而南島岩漿需加入10-40%混合沉積物源岩漿及90-60%海洋地殼源岩漿,此混合沉積物即包含碎屑沉積物及海水自生沉積物(authigenic sediments),然而,巴丹島(Batan island)岩漿除了需加入約70:30的碎屑沉積物源及海洋地殼源岩漿外,需有約0.005%的鋯石自海洋地殼岩漿分出而殘留於地函,始能符合巴丹島岩漿成份。
    此次研究發現兩個不同於現有研究之結果:(一) 現有針對北呂宋島弧區域之研究從未討論隱沒海洋地殼所扮演的角色,而本文提出海洋地殼源岩漿亦為此區重要的交代換質介質之一;(二) 現有文獻認為此區受到遠洋沉積物之交代換質,而此研究發現南中國海之半遠洋沉積物即可解釋北呂宋島弧之鍶、釹、鉿、鉛同位素特徵;(三) 南中國海板塊之年紀(~35 Ma)及地函擄獲岩中發現之埃達克質(adakitic)包裹體皆支持隱沒海洋地殼源岩漿之加入。

    Subducted sediments are key components in crustal-mantle recycling. Understandings on convergent margin magmatism, mantle heterogeneity, crustal composition, and crustal growth all require constraints on the chemical fluxes of subducted sediments. However, the compositions of the subducted sediments vary significantly among subduction zones. Moreover, their chemical effects also depend on the nature of subduction, such as subduction angle and age of the subducted plate. Consequently, there is a clear need to characterize the chemical flux in individual subduction zones. This study aims to determine the role of the subducting South China Sea (SCS) sediments in mantle metasomatism beneath the North Luzon Arc (NLA) using Sr-Nd-Hf-Pb isotope systematics.
    Based on Sr-Nd-Hf-Pb isotope variations, three mantle metasomatism models are considered for the sources of NLA lavas. They are: (I) addition of bulk sediments to depleted mantle, (II) depleted mantle metasomatized by sediment-derived melts, and (III) depleted mantle metasomatized by melts derived from sediments and altered oceanic crust (AOC). Although not considered in model calculations, the contributions of sediment-derived and AOC-derived fluids are also addressed qualitatively. The first metasomatism model results in mixing curves overlapping with the mantle array in Sr versus Nd and Hf isotope plots, inconsistent with the distributions of the NLA lavas, which deviate from mantle array to lower 143Nd/144Nd and 176Hf/177Hf values. This model also fails to explain the NLA lavas in Pb versus Sr, Nd and Hf isotopes spaces. The involvement of sediment-derived melts (Model II) leads to source compositions with larger deviation from the NLA lavas in Sr versus Nd and Hf isotope plots, because sediment-derived melts have higher Sr/Nd and Sr/Hf ratios than their sources. Since Pb has similar compatibility to Nd and Hf, this model results in comparable mixing curves to model I. The mixing curves derived from model III with variable amounts of residual zircons provide the best fit to most NLA lavas. Specifically, with 0.0016-0.0032% residual zircons in the subducted sediments, 20-50% AOC-derived melts and 50-80% sediment-derived melts can explain the N-island lavas, whereas the S-island lavas can be derived from sources metasomatized by 90-60% AOC-derived melts and 10-40% sediment-derived melts. The sources of Batan island lavas can be explained by ~30% AOC-derived melts in equilibrium with 0.005% residual zircons and ~70% sediment-derived melts. In all three models, the addition of AOC-derived fluids can improve the model fits to the NLA data. However, the contribution of AOC-derived fluids to the trace element budgets in the metasomatized mantle should be far less significant compared to that of the slab-derived melts due to their low trace element abundances.
    Two major differences between the existing and the proposed metasomatism models are: (1) the involvement of AOC-derived melts which were not considered by existing models can be the depleted metasomatic agents that satisfactorily explain most NLA lavas, and (2) the melts derived from SCS hemipelagic sediments can be the appropriate long-term enriched component. There is no need to postulate involvements of liquids from pelagic sediments, which is absent in the present-day NLA tectonic setting. In addition, the requirement of AOC-derived melts is consistent with the subduction of young SCS plate (~35 Ma) and the occurrence of the adakitic glass inclusions in mantle xenoliths. Finally, more rock samples from the NLA, specifically Lutao island, have to be analyzed for Sr, Nd, Hf, and Pb isotope ratios to justify the linear trends of these lavas in the Sm/Hf-143Nd/144Nd and Sm/Hf-176Hf/177Hf plots of Marini et al. (2005) and to re-evaluate the role of crustal contamination.

    摘要--I Abstract--III 誌謝--V Table of contents--i List of tables--iii List of figures--iv Chapter 1 Introduction--1 Chapter 2 Geological setting and samples--10 Chapter 3 Analytical techniques and procedures--14 3.1 Leaching--14 3.1.1 Method 1: Hot HCl leaching--14 3.1.2 Method 2: Two step leaching by acetic acid and aqua regia--17 3.1.3 Method 2: HCl leaching by ultrasonic vibration--21 3.2 Digestion--21 3.3 Chemical separations--21 3.3.1 Pb separation--22 3.3.2 Hf separation--24 3.3.3 Sr and Nd separations--24 3.4 Measurements--31 3.4.1 MC-ICP-MS--31 3.4.2 TIMS--33 3.4.3 Q-ICP-MS--33 Chapter 4 Results--38 4.1 Trace element abundances--38 4.2 Isotope compositions--38 4.3 Isotopic systematics--47 Chapter 5 Discussion--51 5.1 Identifying metasomatic agents--51 5.1.1 Model I--55 5.1.2 Model II--60 5.1.3 Model III--64 5.2 Differences between the existing and newly proposed metasomatism models for NLA lavas--65 5.3 Constraining relative contributions of metasomatic agents--70 5.4 Physical aspects of the proposed metasomatism model--71 5.4.1 The nature of the subducted slab--71 5.4.2 Compare with geophysical data--79 5.5 Comparisons between the NLA and other arc systems--81 Chapter 6 Conclusions--85 References--87 Fig. 1-1 The sketch of mantle metasomatism at a subduction zone. 2 Fig. 1-2 The 10Be/Be atom ratio vs. B/Be from Morris et al. (1990). 2 Fig. 1-3 The geological map of the region of North Luzon Arc (NLA). 4 Fig. 1-4 Nd-Sr isotopic plot from Chen et al. (1990). 6 Fig. 1-5 87Sr/86Sr vs. 143Nd/144Nd plot of McDermott et al. (1993). 6 Fig. 1-6 Three groups of the NLA lavas define distinct Sm/Hf-143Nd/144Nd and Sm/Hf-176Hf/177Hf arrays. 8 Fig. 1-7 εHf vs. εNd diagram comparing NLA lavas to the field of MORB, Fe-Mn crusts and nodules, SCS sediments and lithogenous-hemipelagic sands and clays. 8 Fig. 2-1 Geographic distribution of NLA islands and their radiometric ages (numbers shown in boxes, Ma) from Yang et al. (1996). 11 Fig. 2-2 Age-depth relationship for sediments from Leg 184 sites from Wang et al.(1999, 2000). 12 Fig. 3-1 Sketch for analytical procedures for Sr, Nd, Hf and Pb isotope and trace element abundances. 15 Fig. 3-2 Sketch for hot HCl-leaching procedures (method 1). 15 Fig. 3-3 Comparison between temporal variation of 87Sr/86Sr ratios of seawater (McArthur et al., 2001) and that of sample A21 leachates from different HCl concentrations. 16 Fig. 3-4 Sketch of the two-step leaching procedure; acetic-acid leaching followed by aqua- regia leaching. 19 Fig. 3-5 Comparison between 87Sr/86Sr of seawater and leachates 1 and 2 from the two-step leaching procedure. 20 Fig. 3-6 Sequence for Pb, Hf, Sr and Nd separations. 22 Fig. 3-7 Sketch of procedures for Pb separations. 23 Fig. 3-8 Sketch of first column procedures for HFSE separation. 25 Fig. 3-9 Sketch of second column procedured for separating Hf from Ti and Zr. 26 Fig. 3-10 Elution curves from second column procedures for Hf separation. 27 Fig. 3-11 Sketch of first column procedures for collecting Sr and REE aliquot. 29 Fig. 3-12 Sketch of Sr-spec and Ln column procedures. 30 Fig. 3-13 Sketch and photo of Nu Plasma MC-ICP-MS. 32 Fig. 3-14 Sketch and photo of Finnigan MAT 262 TIMS. 34 Fig. 3-15 Long-term (8/8/2005-6/19/2007) measurements on the 143Nd/144Nd and 87Sr/86Sr ratios of standard ALTA and SRM 987. 35 Fig. 3-16 Sketch and photo of Agilent 7500ce Q-ICP-MS. 37 Fig. 4-1 Tempral variations of Pb, Sr and Nd abundances. 40 Fig. 4-2 Tempral variations of Hf abundances. 41 Fig. 4-3 Tempral variations of isotopic ratios. 45 Fig. 4-4 Sr-Nd-Hf isotopic systematics of leached and un-leached SCS sediments. 48 Fig. 4-5 Pb isotopic ratios versus 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf ratios of leached SCS sediments. 49 Fig. 5-1 Sr-Nd-Hf-Pb isotopic plots of Model I results with SCS sediments and NLA lavas. 57 Fig. 5-2 Sr-Nd-Hf-Pb isotopic plots of Model II results with SCS sediments and NLA lavas. 61 Fig. 5-3 Sr-Nd-Hf-Pb isotopic plots of Model III results with SCS sediments and NLA lavas. 66 Fig. 5-4 PM-normalized REE patterns of (a) NLA lavas, and (b) pelagic sediments. 72 Fig. 5-5 Comparisons between Sr-Nd-Hf-Pb isotopic systematics of N-islands and results from metasomatism model III. 73 Fig. 5-6 Comparisons between Sr-Nd-Hf-Pb isotopic systematics of S-islands and results from metasomatism model III. 75 Fig. 5-7 Comparisons between Sr-Nd-Hf-Pb isotopic systematics of Batan islands and results frommetasomatism model III. 77 Fig. 5-8 The slab subduction angles at N-island, Batan island and S-islands. 80 Fig. 5-9 The seismicity distribution and focal mechanism solutions from Bautista et al. 80 Fig. 5-10 The sketch of the transportation of metasomatized mantle from 70 km to sub-NLA mantle at 100 km. 84 Fig. 5-11 Generalized map of the Trans-Mexican Volcanic Belt (TMVB). 84 Table 3-1 87Sr/86Sr and 143Nd/144Nd ratios of leached and un-leached aliquots of sample A21 16 Table 3-2 87Sr/86Sr and 143Nd/144Nd ratios of leachate 1 and 2 of six selective samples 20 Table 4-1 Trace element abundances of leached and un-leached aliquots. 39 Table 4-2 Isotopic ratios of leached and un-leached aliquots. 42 Table 5-1 The trace element and isotope composition of the depleted and enriched components. 53 Table 5-2 Partition coefficients for calculating dehydration and partial melting. 54

    An, Z., Kutzbach, E. J., Prell, W. L. and Porter, S. C. (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times, Nature, 411:62-66.
    Stracke, A., Hofmann, A. W. and Hart, S. R. (2005) FOZO, HIMU, and the rest of the mantle zoo, Geochemistry, Geophysics, Geosystems, 6: 2004GC000824.
    Asahara, Y., Tanaka, T., Kamioka, H. and Nishimura, A. (19950 Asian continental nature of 87Sr/86Sr ratios in north central Pacific sediments, Earth and Planetary Science Letters, 133: 105–116.
    Barry, T. L., Pearce, J. A., Leat, P. T., Millar, I. L. and le Roex, A. P. (2006) Hf isotope evidence for selective mobility of high-field-strength elements in a subduction setting: South Sandwich Islands, Earth and Planetary Science Letters, 252: 223-244.
    Bautista, B. C., Bautista, M. L. P., Oike, K., Wu, F. T. and Punongbayan, R. S. (2001) A new insight on the geometry of subducting slabs in northern Luzon, Philippines, Tectonophysics, 339: 279-310.
    Becker, H., Jochum, K. P. and Carlson, R. W. (1999) Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones, Chemical Geology, 160: 291-308.
    Ben Othman, D., White, W. M., Patchett, P. J. (1989) The geochemistry of marine sediments, island arc magma genesis, and crustmantle recycling, Earth and Planetary Science Letters, 94: 1-21.
    Blichert-Toft, I., Frey, F. A. and Albarede, F. (1999) Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts, Science, 285: 879-882.
    Brenan, J. M., Shaw, H. F., Ryerson, F. J. and Phinney, D. L. (1995) Mineral-aqueous fluid partitioning of trace elements at 900C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids, Geochimica et Cosmochimica Acta: 59: 3331-3350.
    Brias, A. Patriat, P. and Tapponnier, P. (1993) Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia, Journal of Geophysical Research, 98: 6299-6328.
    Castillo, P. R. and Newhall, C. G. (2004) Geochemical constraints on Possible subduction components in lavas of Mayon and Taal volcanoes, south Luzon, Philippines, Journal of Petrology, 45: 1089-1108.
    Chen, C-. H., Shieh, Y-. N., Lee, T., Chen, C. H., and Mertman, S. A. (1990) Nd-Sr-O isotopic evidence for source contamination and an unusual mantle component under Luzon Arc, Geochimica et Cosmochimica Acta, 54: 2473-2483.
    Chen, J. C. and Huang, C. B. (1986) Geochemistry of late Cenozoic andesites from Taiwan, Proceedings of the National Science Council (ROC), 10: 325-334.
    Class, C., Miller, D. M., Goldstein, S. L. and Langmuir, C. H (2000) Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc, Geochemistry, Geophysics, Geosystems, 1: 1999GC000010.
    Clift, P., Lee, J. I., Clark, M. K. and Blusztajn, J. (2002) Erosional response of South China to arc rifting and monsoonal strengthening; a record from the South China Sea, Marine Geology, 184: 207-226.
    Davies, J. H. and Bickle, M. J. (1991) A physical model for the volume and composition of melt produced by hydrous fluxing above subduction zones, Philosophical transactions of the Royal Society of London, Series A, 335: 355-364.
    Defant, M. J., Jacques, D., Maury, R. C., Boer, J. D. and Joron, J. L. (1989) Geochemistry and tectonic setting of the Luzon arc Philippines, Geological Society of America Bulletin, 101: 663-672.
    Deschamps, A., and Lallemand, S. (2002) The West Philippine Basin: An Eocene to early Oligocene back arc basin opened between two opposed subduction zones, Journal of Geophysical Research, 107: 2322.
    Elliott, T., Plank, T., Zindler, A., White, W. and Bourdon, B. (1997) Element transport from slab to volcanic front at the Mariana Arc, Journal of Geophysical Research, 102: 14991-15019.
    Ferrari, L. (2004) Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico, Geology, 32: 77-80.
    Gallet, S., Jahn, B.M. and Torii M. (1996) Geochemical characterization of the Luochuan loess–paleosol sequence, China, and paleoclimatic implications, Chemical Geology 133: 67–88.
    Gill, J. B. (1981) Orogenic Andesites and Plate Tectonics, 390 pp., Springer, New York.
    Goldstein, S. L. and O’Nions, R. K. (1981) Nd and Sr isotopic relationships in pelagic clays and ferromanganese deposits, Nature, 292: 324-327.
    Gmez-Tuena, A., Langmuir, C. H., Goldstein, S. L., Straub, S. M. and Ortega- Gutirrez, Fernando (2007) Geochemical Evidence for Slab Melting in the Trans-MexicanVolcanic Belt, Journal of Petrology, 48(3): 537-562.
    Green, T. H. and Adam, J. (2003) Experimentally-determined trace element characteristics of aqueous fluid from partially dehydration mafic oceanic crust at 3.0 Gpa, 650–700C, European Journal of Mineralogy, 15: 815-830.
    Hawkesworth, C. J., Gallagher, K., Hergt, J. M. and McDermott, F. (1993) Mantle and slab contributions in arc magmas, Annual Reviews of Earth and Planetary Sciences, 21:175-204.
    Hayes, D. E. and Lewis, S. D. (1984) A geophysical study of the Manila trench, Luzon, Philippines 1. Crutal structure, gravity, and regional tectonic evolution, Journal of Geophysical Research, 89: 9171-9195.
    Houseman, G. and England P. (1993) Crustal thickening versus lateral expulsion in the Indiaa-Asian continental collision, Journal of Geophysical Research, 98: 12233-12249.
    Huang, C.- Y., Wu, W.- Y., Chang, C.- P., Tsao, S., Yuan, P. B., Lin, C.- W. and Yuan, X.- K. (1997) Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan, Tectonophysics, 281: 31-51.
    Janney, P. E., Le Roex, A. P. and Carlson, R. W. (2005) Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central southwest Indian ridge (13 °E to 47 °E), Journal of Petrology, 46: 2427-2464.
    Johnson, M. C. and Plank, T. (1999) Dehydration and Melting Experiments Constrain the Fate of Subducted Sediments, Geochemistry Geophysics Geosystems, 1: 1999GC000014.
    Kay, R. W., Sun, S.- S. and Lee-Hu, C.- N. (1978) Pb and Sr isotopes in volcanic rocks from the Aleutian islands and Pribilof Islands, Alaska, Geochimica et Cosmochimica Acta, 42: 263-272.
    Kelley, K. A., Plank, T., Ludden, J. and Staudigel, H. (2003) Composition of altered oceanic crust at ODP Sites 801 and 1149, Geochemistry Geophysics Geosystems, 4: 2002GC000435.
    Klemme, S., Blundy, J. D. and Wood, B. J. (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite, Geochimica et Cosmochimica Acta, 66: 3109–3123.
    Landing, W. M. and Lewis, B.L. (1991) Collection, processing, andanalysis of marine particulate and colloidal material for transition metals, Marine Particles: Analysis and Characterization, 263–272.
    Lee, D.- C., Halliday, A. N., Hein, J. R., Burton, K. W., Christensen, J. N. and Gunther, D. (1999) Hafnium isotope stratigraphy of ferromanganese crusts, Science, 285: 1052-1054.
    Lee, D.- C., (2005) Lee, D.- C., (2005) Protracted core formation in asteroids: Evidence from high precision W isotope data, Earth and Planetary Science Letters, 237: 21-32.
    Li, Q., Jian, Z. and Li B. (2000) Oligocene-Miocene planktonic foraminifer biostratigraphy, Site 1148, northern South China Sea, Proceedings of the ODP, Initial Reports, 184, Chapter 9.
    Li, Q., Wang, P., Zhao, Q., Shao, L, Zhong, G., Tian, J., Cheng, X. Jian, Z. and Su, X. (2006) A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea, Marine Geology, 230: 217-235.
    Li, X.- H., Wei, G., Shao, L., Liu, Y., Liang X., Jian, Z., Sun, M. and Wang, P. (2003) Geochemical and Nd isotopic variations in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia, Earth and Planetary Science Letters, 211: 207-220.
    Marini, J.- C., Chauvel, C. and Maury, R. C. (2005) Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source, Contributions to Mineralogy and Petrology, 149: 216-232.
    McArthur, J. M., Howarth, R. J. and Bailey, T. R. (2001) Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age, Journal of Geology, 109: 155-170.
    McCulloch, M. T. and Gamble, J. A. (1991) Geochemical and geodynamical constraints on subduction zone magmatism, Earth and Planetary Science Letters, 102: 358-374.
    McDermott, F., Defant, M. J., Hawkesworth, C. J., Maury, R. C. and Joron, J. L. (1993) Isotope and trace element evidence for three component mixing in the genesis of the North Luzon arc lavas (Philippines), Contributions to Mineralogy and Petrology, 113: 9-23.
    McManus, J. Berlson, W. M., Klinkhammer, G. P., Johnson, K. S., Coale, K. H., Anderson, R. F., Kumar, N., Burdige, D. J., Hammond, D. E., Brumsack, H. J., McCorkle, D. C. and Rushdi, A. (1998) Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy, Geochimica et Cosmochimica Acta, 62: 3453–3473.
    Miller, D. M. (1995) Petrogenesis of adjacent calc-alkaline and tholeiitic volcanoes on Umnak Islands, Aleutian Islands, Alaska, Ph.D. thesis, Columbia University, New York.
    Miller, D. M., Goldstein, S. L. and Langmuir, C. H. (1994) Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents, Nature, 368: 514-520.
    Morris, J. D., Leeman, W. P. and Tera, F. (1990) The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics, Nature, 344:31-36.
    Pardo, M. and Surez, G. (1995) Shape of the subducted Rivera and Cocos plate in southern Mexico: seismic and tectonic implications, Journal of Geophysical Research, 100: 12357-12373.
    Pearce, J. A. and Peate, D. W. (1995) Tectonic implications of the composition of volcanic arc magmas, Annual Review of Earth and Planetary Sciences, 23: 251-285.
    Perfit, M. R., Gust, D. A., Bence, A. E., Arculus, R. J. and Taylor, S. R. (1980) Chemical characteristics of islands-arc basalts: Implications for the mantle sources, Chemical Geology, 30: 227-256.
    Pertermann, M. and Hirschmann, M. M. (2002) Trace-element partitioning between vacancy-rich eclogitic clinopyroxene and silicate melt, American. Mineralogist, 87: 1365–1376.
    Pertermann, M., Hirschmann, M. M., Hametner, K., Gnther, D. and Schmidt, M. W. (2004) Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite, Geochemistry. Geophysics Geosystems: 5: Paper number 2003GC000638.
    Plank, T. and Langmuir, C. H., (1988) An evaluation of the global variations in the major element chemistry of arc basalts, Earth and Planetary Science Letters, 90: 349-370.
    Plank, T. and Langmuir, C. H. (1998) The Chemical composition of sucducting sediment and its consequences foe the crust and mantle, Chemical Geology, 145: 325-394.
    Rubatto, D. and Hermann, J. (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones, Geochimica et Cosmochimica Acta, 67: 2173–2187.
    Jego, S., Maury, R. C., Polve, M., Yumul, G. P., Bellon, H., Tamayo, R. A. and Cotton, J. (2006) Geochemistry of adakites from the Philippines: constraints on their origins, Geophysical Research Abstracts, 8: 04694.
    Salters, V. J. M. and Hart, S. R. (1991) The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection, Earth and Planetary Science Letters, 104: 364-380.
    Schiano, P., Clocchiatti, R., Shimizu, N., Maury, R. C., Jochum, K. P. and Hofmann, A. W. (1995) Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas, Nature, 377: 595-600.
    Schmidt, M. W. (1996) Experimental constraints on recycling of potassium from subducted oceanic crust, Science, 272:1927-1930.
    Schmidt, M. W. and Poli, S. (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth and Planetary Science Letters, 163: 361-379.
    Smith, A. D. and Huang, L. Y. (1997) The use of extraction chromatographic materials in procedures for the isotopic analysis of neodymium and strontium in rocks by thermal ionization mass spectrometry, Cheng Kung Journal, Science, Engineering & Medicine Section, 32:1-10.
    Spandler, C., Mavrogenes, J. and Hermann, J. (2007) Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions, Chemical Geology, 239: 228-249.
    Stalder, R., Foley, S. F., Brey, G. P. and Horn, I. (1998) Mineral-aqueous fluid partitioning of trace elements at 900-1200C and 3.0-5.7 Gpa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism: Geochimica et Cosmochimica Acta, 62: 1781-1801.
    Sun, S.- S. and McDonough, W. F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geological Society of London Special Publication, 42: 313-345
    Tatsumi, Y., Hamilton, D. L. and Nesbitt, R. W. (1986) Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and nature rocks, Journal of Volcanology and Geothermal Research, 29: 293-309.
    Taylor, B. and Hayes, D. E. (1980) The tectonic evolution of South China Basin, The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, American Geophysical Union, monograph, 23: 89-104
    Tera, F., Brown, L., Morris, J., Sacks, S., Klein, J. and Middleton, S. (1986) Sediment incorporation in island-arc magmas: inferences from l0Be, Geochimica et Cosmochimica Acta, 50: 535-550.
    Thirlwall, M. F., Graham, A. M., Arculus, R. J., Harmon, R. S. and Macpherson, C. G. (1996) Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles, Geochimica et Cosmochimica Acta, 60: 4785-4810.
    Tollstrup, D. L. and Gill, J. B. (2005) Hafnium systematics of the Mariana arc: Evidence for sediment melt and residual phases, Geology, 33: 737-740.
    Turner S., Hawkesworth, C., Rogers, N., Bartlett, J., Worthington, T., Hergt, J., Pearce, J. and Smith, I. (1997) 238U-230Th disequilibria, magma petrogenesis and flux rates beneath the depleted Tonga-Kermadec island arc, Geochimica et Cosmochimica Acta, 61: 4855-4884.
    Vroon, P. Z., van Bergen, M. J., White, W. M. and Varekamp, J. C. (1993) Sr-Nd-Pb isotope systematics of the Banda Arc, Indonesia: Combined subduction and assimilation of continental material, Journal of Geophysical Research, 98: 22349-22366.
    Wade, J. A., Plank, T., Stern, R. J., Tollstrup, D. L., Gill, J. B., O’Leary, J. C., Eiler, J. M., Moore, R. B., Woodhead, J. D., Trusdell, F., Fischer, T. P. and Hilton, D. R. (2005) The May 2003 eruption of Anatahan volcano, Mariana Islands: Geochemical evolution of a silicic island-arc volcano, Journal of Volcanology and Geothermal Research, 146:139-170.
    Wang, P., Prell, W. L., Blum, P. et al. (1999) ODP Leg 184 Preliminary report: South China Sea, http://www-odp.tamu.edu/publications/prelim/184_prel/184toc.html.
    Wang, P., Prell, W. L., Blum, P. et al. (2000) ODP Leg 184 initial report: South China Sea, Proceedings of the ODP, Initial Reports, 184, 1-77.
    Warnken, K.W., Gill G. A., Griffin, L. L. and Santschi, P. H. (2001) Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas, Marine Chemistry, 73 : 215–231.
    Weaver, B. L. (1991) The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints, Earth and Planetary Sciences Letters, 104:364-397.
    White, W. M. and Dupre, B. (1986) Sediment subduction and magma genesis in the Lesser Antilles: Isotopic and trace element constraints, Journal of Geophysical Research, 91: 5927-5941.
    Woodhead, J. D., Hergt, J. M., Davidson, J. P. and Eggins, S. M. (2001) Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes, Earth and Planetary Science Letters, 192: 331-346.
    Workman, R. K. and Hart, S. R. (2005) Major and trace element composition of the depleted MORB mantle (DMM), Earth and Planetary Science Letters, 231: 53– 72.
    Yang, T. F., Lee, T., Chen, C.- H., Cheng, S.- N., Knittel, U., Punongbayan, R. S. and Rasdas, A. R. (1996) A double island arc between Taiwan and Luzon: consequence of ridge subduction, Tectonophysics, 258: 85-101.
    Zinderler A. and Hart, S. (1986) Chemical geodynamics, Annual Review of Earth and Planetary Sciences, 14:493-571.

    下載圖示 校內:2010-08-28公開
    校外:2010-08-28公開
    QR CODE