| 研究生: |
陳蔡昆 chen, Tsai-kun |
|---|---|
| 論文名稱: |
Rhodostomin RXDDL motif 對於整合蛋白αVβ3的辨識所扮演的角色 The Role of the RXDDL Motif of Rhodostomin in Recognizing Integrin αVβ3 |
| 指導教授: |
莊偉哲
Chuang, Woei-jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 整合蛋白 |
| 外文關鍵詞: | rhodostomin, integrin, RGD |
| 相關次數: | 點閱:101 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
整合蛋白們(integrins)是位於細胞表面異質雙體的接受器,其功能為細胞移動、黏附上不同的細胞或是不同的細胞基質,整合蛋白的配體是利用RGD ( Arg-Gly-Asp )、ILDV或是短的序列作為它們與整合蛋白黏結的基本結構。從蛇毒中純化出去整合蛋白為含有保留性的RGD與 cysteine-rich的蛋白家族。很多研究指出RGD motif 與 RGD motif 相鄰的胺基酸對於整合蛋白與配體間的辨識扮演很重要的角色,而且這類蛋白主要是與整合蛋白 β1 和 β3 家族作用。在本研中,我們以Rhodostomin(簡稱Rho)為鷹架,去探討 RGD motif 與 RGD motif 相鄰的胺基酸對於整合蛋白與配體間的辨識, Rho 為去整合蛋白中的一員,它含有68個胺基酸,以及6對雙硫鍵鍵結,並且在序列48~53上含有PRGDMP的序列。在我們先前研究中發現到在RGD motif 上R與D之間的殘基,或是在相接於RGD motif C-terminally 含有 DL (Asp-Leu)的殘基,兩者皆具有對於整合蛋白αVβ3有特異性。結合以上兩著的概念,我們設計出 48PRXDDL53 motif,藉此了解在R與D之間的殘基對於整合蛋白辨識所造成的影響。除了實驗室先前表現PRGDDL與PRLDDL,我已經利用 P. pastoris 系統表現出十七株Rho 的突變蛋白,各為PRADDL 、 PRDDDL 、 PREDDL 、 PRFDDL 、 PRHDDL 、 PRIDDL 、PRKDDL 、 PRMDDL 、 PRNDDL 、 PRPDDL 、 PRQDDL 、 PRRDDL 、PRSDDL 、 PRTDDL 、 PRVDDL 、 PRWDDL 和 PRYDDL 並均質純化,這些Rho 的突變蛋白在P. pastoris 表系統的產率為4.3~16.5mg/L,其突變株之預估分子量與實驗值誤差小於1 Da,暗示著在 Rho 和其突變株有六對雙硫鍵的形成。利用血小板凝集和細胞黏著試驗結果發現Rho的含有48PRXDDL53突變對αIIbβ3與α5β1親和性差,其中PRMDDL、 PRPDDL、 PRWDDL與PRLDDL能夠特異性的抑制整合蛋白αVβ3,其IC50數值分別是175、188、387與342 nM。此研究,可以去探討整和白與去整合蛋白結構與功能間的關係,提供未來設計專一性抑制整合蛋白αvβ3的去整合蛋白。
Integrins are heterodimeric cell surface receptors required for cell trafficking and for adhesion to other cell types and to constituents of the extracellular matrix. The ligands of integrins utilize RGD, ILDV, or short sequences as a key structural component for their integrin-binding site. Disintegrins are a family of RGD-containing and cysteine-rich proteins isolated from snake venoms. Many reports show that the RGD motif and the amino acid residues flanking the RGD sequence of disintgrins play an important role in recognizing integrins. They mainly interact with the β1 and β3 families of integrins. In this study we used rhodostomin (Rho) as the scaffold to study the roles of the RGD motif and the amino acid residues flanking the RGD sequence of disintegrins in recognizing disintegrins. Rho is a disintegrin that contains 68 amino acids including 6 disulfide bonds and a PRGDMP sequence at the positions of 48-53. Our previous study showed that Rho containing either the residue flanking the R and D residues or the DL residues C-terminally adjacent to RGD motif had high potency and specificity to integrin αVβ3. Therefore, we incorporated the 48PRXDDL53 motif into Rho to study the effect of the residue flanking the R and D residues in recognizing integrins. In addition to PRGDDL, PRLDDL, and PRIDDL mutants, I have expressed seventeen mutants PRHDDL, PRYDDL, PRADDL, PRCDDL, PRDDDL, PREDDL, PRFDDL, PRKDDL, PRMDDL, PRNDDL, PRPDDL, PRQDDL, PRRDDL, PRSDDL, PRTDDL, PRVDDL and PRWDDL in Pichia pastoris and purified them to homogeneity. The mutant proteins produced in P. pastoris were 4.3-16.5mg/L. The experimental molecular weights of the mutants deviate <1 Da when compared with calculated values, indicating the formation of six disulfide bond in these mutants. The analysis of platelet aggregation and cell adhesion assays showed that Rho mutants-containing the PRXDDL motif has low potency to integrin α5β1 and αIIbβ3. The mutants PRMDDL, PRPDDL, PRWDDL, and PRLDDL can selectively inhibit integrin αvβ3 with the IC50 value of 175, 188, 387, and 342 nM, respectively. This study may serve as the basis for exploring the structure and function relationships of integrins and disintegrins and for designing integrin αvβ3-specific disintegrins.
Arnaout, M.A., Mahalingam, B., and Xiong, J.P. (2005). Integrin structure, allostery, and bidirectional signaling. Annual review of cell and developmental biology 21, 381-410.
Berman, A.E., Kozlova, N.I., and Morozevich, G.E. (2003). Integrins: structure and signaling. Biochemistry 68, 1284-1299.
Chang, H.H., Chang, C.P., Chang, J.C., Dung, S.Z., and Lo, S.J. (1997). Application of Recombinant Rhodostomin in Studying Cell Adhesion. J Biomed Sci 4, 235-243.
Chang, H.H., Hu, S.T., Huang, T.F., Chen, S.H., Lee, Y.H., and Lo, S.J. (1993). Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochemical and biophysical research communications 190, 242-249.
Chang, S.J.L.a.H.-H. (2005). Recombinant snake disintegrins used for mammalian integrin study. Toxin Reviews 24, 95~115.
Copie, V., Tomita, Y., Akiyama, S.K., Aota, S., Yamada, K.M., Venable, R.M., Pastor, R.W., Krueger, S., and Torchia, D.A. (1998). Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure. Journal of molecular biology 277, 663-682.
Daly, R., and Hearn, M.T. (2005). Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18, 119-138.
Dennis, M.S., Carter, P., and Lazarus, R.A. (1993). Binding interactions of kistrin with platelet glycoprotein IIb-IIIa: analysis by site-directed mutagenesis. Proteins 15, 312-321.
Dresner-Pollak, R., and Rosenblatt, M. (1994). Blockade of osteoclast-mediated bone resorption through occupancy of the integrin receptor: a potential approach to the therapy of osteoporosis. Journal of cellular biochemistry 56, 323-330.
Dunon, D., Piali, L., and Imhof, B.A. (1996). To stick or not to stick: the new leukocyte homing paradigm. Current opinion in cell biology 8, 714-723.
Faull, R.J., Du, X., and Ginsberg, M.H. (1994). Receptors on platelets. Methods in enzymology 245, 183-194.
Gehlsen, K.R., Davis, G.E., and Sriramarao, P. (1992). Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clinical & experimental metastasis 10, 111-120.
Goh, K.L., Yang, J.T., and Hynes, R.O. (1997). Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development (Cambridge, England) 124, 4309-4319.
Gould, R.J., Polokoff, M.A., Friedman, P.A., Huang, T.F., Holt, J.C., Cook, J.J., and Niewiarowski, S. (1990). Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine New York, NY 195, 168-171.
Gruner, S., Prostredna, M., Schulte, V., Krieg, T., Eckes, B., Brakebusch, C., and Nieswandt, B. (2003). Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo. Blood 102, 4021-4027.
Guo, R.T., Chou, L.J., Chen, Y.C., Chen, C.Y., Pari, K., Jen, C.J., Lo, S.J., Huang, S.L., Lee, C.Y., Chang, T.W., et al. (2001). Expression in Pichia pastoris and characterization by circular dichroism and NMR of rhodostomin. Proteins 43, 499-508.
Higgins, D.R., and Cregg, J. M. (1998). Pichia Protocols. Methods in Molecular Biology 103, 270.
Hong, S.Y., Sohn, Y.D., Chung, K.H., and Kim, D.S. (2002). Structural and functional significance of disulfide bonds in saxatilin, a 7.7 kDa disintegrin. Biochemical and biophysical research communications 293, 530-536.
Huang, T.F., Wu, Y.J., and Ouyang, C. (1987). Characterization of a potent platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochimica et biophysica acta 925, 248-257.
Humphries, M.J. (2000). Integrin structure. Biochemical Society transactions 28, 311-339.
Humphries, M.J., and Mould, A.P. (2001). Structure. An anthropomorphic integrin. Science (New York, NY 294, 316-317.
Hynes, R.O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. In Cell, pp. 11-25.
Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687.
Koivunen, E., Wang, B., and Ruoslahti, E. (1995). Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Bio/technology (Nature Publishing Company) 13, 265-270.
Kunicki, T.J., Ely, K.R., Kunicki, T.C., Tomiyama, Y., and Annis, D.S. (1995). The exchange of Arg-Gly-Asp (RGD) and Arg-Tyr-Asp (RYD) binding sequences in a recombinant murine Fab fragment specific for the integrin alpha IIb beta 3 does not alter integrin recognition. The Journal of biological chemistry 270, 16660-16665.
Leahy, D.J., Aukhil, I., and Erickson, H.P. (1996). 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155-164.
Locardi, E., Mullen, D.G., Mattern, R.H., and Goodman, M. (1999). Conformations and pharmacophores of cyclic RGD containing peptides which selectively bind integrin alpha(v)beta3. J Pept Sci 5, 491-506.
Lueking, A., Holz, C., Gotthold, C., Lehrach, H., and Cahill, D. (2000). A system for dual protein expression in Pichia pastoris and Escherichia coli. Protein expression and purification 20, 372-378.
Luo, B.H., and Springer, T.A. (2006). Integrin structures and conformational signaling. Current opinion in cell biology 18, 579-586.
Macauley-Patrick, S., Fazenda, M.L., McNeil, B., and Harvey, L.M. (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast (Chichester, England) 22, 249-270.
Marcinkiewicz, C., Vijay-Kumar, S., McLane, M.A., and Niewiarowski, S. (1997). Significance of RGD loop and C-terminal domain of echistatin for recognition of alphaIIb beta3 and alpha(v) beta3 integrins and expression of ligand-induced binding site. Blood 90, 1565-1575.
Matter, M.L., Zhang, Z., Nordstedt, C., and Ruoslahti, E. (1998). The alpha5beta1 integrin mediates elimination of amyloid-beta peptide and protects against apoptosis. The Journal of cell biology 141, 1019-1030.
McLane, M.A., Marcinkiewicz, C., Vijay-Kumar, S., Wierzbicka-Patynowski, I., and Niewiarowski, S. (1998). Viper venom disintegrins and related molecules. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine New York, NY 219, 109-119.
Monsalve, R.I., Lu, G., and King, T.P. (1999). Expressions of recombinant venom allergen, antigen 5 of yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis), in bacteria or yeast. Protein expression and purification 16, 410-416.
Mousa, S.A. (2002). Anti-integrin as novel drug-discovery targets: potential therapeutic and diagnostic implications. Current opinion in chemical biology 6, 534-541.
Pfaff, M., McLane, M.A., Beviglia, L., Niewiarowski, S., and Timpl, R. (1994). Comparison of disintegrins with limited variation in the RGD loop in their binding to purified integrins alpha IIb beta 3, alpha V beta 3 and alpha 5 beta 1 and in cell adhesion inhibition. Cell adhesion and communication 2, 491-501.
Redick, S.D., Settles, D.L., Briscoe, G., and Erickson, H.P. (2000). Defining fibronectin's cell adhesion synergy site by site-directed mutagenesis. The Journal of cell biology 149, 521-527.
Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annual review of cell and developmental biology 12, 697-715.
Scarborough, R.M., Rose, J.W., Hsu, M.A., Phillips, D.R., Fried, V.A., Campbell, A.M., Nannizzi, L., and Charo, I.F. (1991). Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. The Journal of biological chemistry 266, 9359-9362.
Schwartz, M.A., Schaller, M.D., and Ginsberg, M.H. (1995). Integrins: emerging paradigms of signal transduction. Annual review of cell and developmental biology 11, 549-599.
Shimaoka, M., and Springer, T.A. (2003). Therapeutic antagonists and conformational regulation of integrin function. Nature reviews 2, 703-716.
Shimaoka, M., Takagi, J., and Springer, T.A. (2002). Conformational regulation of integrin structure and function. Annual review of biophysics and biomolecular structure 31, 485-516.
Siddiqi, A.R., Persson, B., Zaidi, Z.H., and Jornvall, H. (1992). Characterization of two platelet aggregation inhibitor-like polypeptides from viper venom. Peptides 13, 1033-1037.
Springer, T.A., and Wang, J.H. (2004). The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Advances in protein chemistry 68, 29-63.
Sumathipala, R., Xu, C., Seago, J., Mould, A.P., Humphries, M.J., Craig, S.E., Patel, Y., Wijelath, E.S., Sobel, M., and Rahman, S. (2006). The "linker" region (amino acids 38-47) of the disintegrin elegantin is a novel inhibitory domain of integrin alpha5beta1-dependent cell adhesion on fibronectin: evidence for the negative regulation of fibronectin synergy site biological activity. The Journal of biological chemistry 281, 37686-37696.
Takada, Y., Ye, X., and Simon, S. (2007). The integrins. Genome Biol 8, 215.
Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F., and Hynes, R.O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271-282.
Trikha, M., De Clerck, Y.A., and Markland, F.S. (1994). Contortrostatin, a snake venom disintegrin, inhibits beta 1 integrin-mediated human metastatic melanoma cell adhesion and blocks experimental metastasis. Cancer research 54, 4993-4998.
Varner, J.A., and Cheresh, D.A. (1996). Integrins and cancer. Current opinion in cell biology 8, 724-730.
White, C.E., Kempi, N.M., and Komives, E.A. (1994). Expression of highly disulfide-bonded proteins in Pichia pastoris. Structure 2, 1003-1005.
Wierzbicka-Patynowski, I., Niewiarowski, S., Marcinkiewicz, C., Calvete, J.J., Marcinkiewicz, M.M., and McLane, M.A. (1999). Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. The Journal of biological chemistry 274, 37809-37814.
Xiong, J.P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., and Arnaout, M.A. (2001). Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science (New York, NY 294, 339-345.
Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., and Arnaout, M.A. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science (New York, NY 296, 151-155.
許家豪 (2003). 含RGD序列蛋白在辨識組合蛋白上的結構與功能關係之研究. 國立成功大學生物化學研究所碩士論文.
郭瑞庭 (1998). 馬來蝮蛇蛇毒基因的選殖及蛇毒蛋白之功能及三度空間結構之研究. 國立成功大學生物化學研究所碩士論文.
陳彥青 ( 2001). 馬來蝮蛇蛇毒蛋白及其突變株的結構與動力學之研究. 國立成功大學生物化學研究所碩士論文.
陳秋月 (2005). 利用 Rhodostomin 研究 Integrin 的辨識序列和研發製備胺基酸選擇性同位素標示蛋白的方法. 國立成功大學基礎醫學研究所博士論文.