| 研究生: |
吳佳穎 Wu, Jia-Ying |
|---|---|
| 論文名稱: |
不同氣氛控制下所合成之 (Y1-xTbx)3Al5O12 固溶體的晶體結構與螢光性質 Crystal Structure and Fluorescent Property of (Y1-xTbx)3Al5O12 Solid-Solution Synthesized in Different Atmosphere |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 釔鋁石榴石 、鋱鋁石榴石 、氣氛控制 、異價 、束縛能 、螢光效應 |
| 外文關鍵詞: | Hetervalance, Atmosphere Controlling, TAG, YAG, Binding Energy, Fluorescence effect |
| 相關次數: | 點閱:65 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用調整 pH 值方式,使反應物達到均勻混合與分散目的,並以固相反應法搭配氣氛控制合成 (Y1-xTbx)3Al5O12 固溶體,討論晶體結構與螢光性質之間關連性。
第一部份為在無控制氣氛下,合成 (Y1-xTbx)3Al5O12 固溶體,討論藉由大量添加鋱離子進入 YAG 主體結構造成主體轉換,及主體轉換對於鋱離子價數的影響,並同時探討此系統晶體結構與螢光性質。由於鋱離子易失去一電子而產生異價 (Tb4+),因此在無控制氣氛下會同時存在 Tb3+ 及 Tb4+。研究發現經過 1600oC/16 h 熱處理,可合成純相 YAG-TAG 固溶體,並且隨著鋱離子添加量增加,內部結構逐漸趨穩定,因此鋱離子價數也比較能夠穩定在三價。
第二部份嘗試利用不同氣氛控制,合成 (Y1-xTbx)3Al5O12 固溶體。比較三種不同氣氛下合成之固溶體,其晶體結構及螢光性質。經過 1600oC/16 h 熱處理後,三種氣氛控制下皆已合成純相 YAG-TAG 固溶體。研究結果顯示,從吸收光譜、PL 光譜強度及 ESCA 能譜束縛能高低,皆可判斷四價鋱量多寡,其鋱四價趨勢越明顯,則會影響不同價數鋱離子取代釔離子,進而造成晶格常數值改變。並且由拉曼光譜中可以發現不同價數鋱離子之螢光效應不同,影響拉曼背景值強度;從 SEM 照片則可觀察到 Tb4+ 取代後造成空缺,進而幫助晶粒成長。
This study uses pH controlling to make the reactant well mixed and dispersed, and synthesizes (Y1-xTbx)3Al5O12 solid-solution with solid-state reaction in different atmosphere, discussing the relationships of crystal structure and fluorescence property.
The first part synthesizes (Y1-xTbx)3Al5O12 solid-solution in air without ventilation, discussing the internal crystal structure changes from YAG to TAG, fluorescence property, and the influence of terbium concentration increased on the ion valence. Due to the Tb3+ is easy to lose one electron, the system would have both the Tb3+ and Tb4+. After 1600oC/ 16 h heat treatment, the pure phase of (Y1-xTbx)3Al5O12 solid-solution will be synthesized. The crystal structure is getting stable as the terbium concentration increases, so the valence of terbium will stabilize trivalence.
The second part tries to synthesize (Y1-xTbx)3Al5O12 solid-solution by the different atmosphere controlling. Then compare with their crystal structure and fluorescence property. The pure phase of (Y1-xTbx)3Al5O12 solid-solution can be obtained after 1600oC/16 h heat treatment. The study shows that from the absorption spectrum, the intensity of PL spectrum, and the binding energy in ESCA can determine the Tb4+ content. If the system has more Tb4+, it will influence the cell parameters by terbium substituting yttrium. And it would be observed the different fluorescence effect in Raman spectrum. Furthermore, the Tb4+ substitutes the Y3+ would generate the vacancies to help the grain growth.
參考文獻
1.) H. S. Yoder and M. L. Keith, “Complete substitution of aluminum for silicon: the system 3MnO.Al2O3.3SiO2-3Y2O3.5Al2O3,” American Mineralogist, 36, 519 (1951).
2.) 劉如熹、王健源,白光發光二極體製作技術,全華圖書,台灣台北,2001。
3.) 石景仁,白光發光二極體用之石榴石螢光粉合成及特性分析,國立台灣大學化學研究所碩士論文,民國90年。
4.) G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, New York, (1994).
5.) Putnis, Introduction to Mineral Science, Cambridge University Press, New York (1992).
6.) G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience, New York (1968); American Institute of Physics Handbook, McGraw Hill, New York, 7-39 (1963).
7.) M. J. Weber, Phosphor Handbook, CRC Press, Boca Raton (1999).
8.) G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, New York, (1994).
9.) 陳昱霖,石榴石 (Y3Al5O12) 螢光體之合成與性質研究,國立成功大學材料科學及工程學系碩士論文,民國 90 年。
10.) 劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華圖書,台灣台北,2002。
11.) H. Yamamoto, Phosphor global summit, March 19, Phoenix, Arizona, USA (2003).
12.) 塩谷繁雄,蛍光材料,化学総説 No. 39 無機光化学,社団法人日本化学会,日本東京都,195-205 頁,1983。
13.) L. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, and K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem., 43, 7656-7664 (2004).
14.) D. A. Pawlak, K. Woźniak, Z. Frukacz, T. L. Barr, D. Fiorentino, and S. Seal, “ESCA studies of yttrium aluminum garnets,” J. Phys. Chem., B 103, 1454-1461 (1999).
15.) Y. N. Xu, and W. Y. Ching, “Electronic structure of yttrium aluminum garnet (Y3Al5O12),” Phys, Rev., B 59 [16], 10530-10535 (1999).
16.) T. Hahn, International tables for crystallography, Volume A, Space-group symmetry, 2nd revised Ed., D. Reidel Publishing Company, Holland, (1987).
17.) R. D. Shannon “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst., A 32, 751-767 (1976).
18.) W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed., John Wiley and Sons, New York, (1976).
19.) C. G. Bergeron and S. H. Risbud, Introduction to phase equilibria in ceramics, Am. Ceram. Soc. Inc., Columbus, (1984).
20.) M. J. Weber, Phosphor handbook, The CRC Press, Boca Raton, (1999).
21.) G. Blasse and B. C. Grabmaier, Luminescent materials, Springer-Verlag, Berlin, (1994).
22.) D. A. Pawlak, G.. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, P. Royer, and T. Fukuda, “Second order self-organized pattern of terbium-scandium-aluminum garnet and terbium-scandium perovskite eutectic,” J. Appl. Phys., 91, 9731-9736 (2002).
23.) S. Saxena, “Sol-gel preparation and optical characterization of TbxY3-xAl5O12,” Mater. Lett., 60, 1315-1318 (2006).
24.) Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri, and K. Arai “Continuous production of phosphor YAG:Tb nanoparticles by hydrothermal synthesis in supercritical water,” Mater. Res. Bull., 38, 1257–1265 (2003).
25.) M. Batentschuk, A. Osvet, G. Schierning, A. Klier, J. Schneider, and A. Winnacker, “Simultaneous excitation of Ce3+ and Eu3+ ions in Tb3Al5O12,” Radiat. Meas., 38, 23539-543 (2004).
26.) M. Geho, T. Sekijima, and T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth, 267, 188-193 (2004).
27.) M. Geho, T. Sekijima, and T. Fujii, “Growth mechanism of incongruently melting terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by laser FZ method,” J. Cryst. Growth, 275, e663-e667 (2005).
28.) Y. S. Lin, R. S. Liu, and B. M. Cheng, “Investigation of the luminescent properties of Tb3+ -substituted YAG:Ce, Gd phosphors,” J. Electrochem. Soc. 152, J41-J45 (2005).
29.) M. Geho, T. Takagi, S. Chiku, and T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. ,44, 4967-4970 (2005).
30.) S. Saxena, “Sol-gel preparation and optical characterization of TbxY3-xAl5O12,” Mater. Lett., 60, 1315-1318 (2005).
31.) 呂侊懋,以創新固相反應法合成鋱鋁石榴石 (TAG) 螢光粉體之研究,中國材料科學學會年會文章,Nov. 2006.
32.) Y. S. Lin and R. S. Liu, “Chemical substitution effects of Tb3+ in YAG:Ce phosphors and enhancement of their emission intensity using flux combination,” J. Lumines.,122-123, 580-582 (2007).
33.) M. Nazarov, D. Y. Noh, J. Sohn, and C. Yoon, “Quantum efficiency of double activated Tb3Al5O12:Ce3+, Eu3+,” J. Solid State Chem., 180, 2493-2499 (2007).
34.) M. Nazarov, D. Y. Noh, J. Sohn, and C. Yoon, “Influence of additional Eu3+ coactivator on the luminescence properties of Tb3Al5O12:Ce3+, Eu3+,” Opt. Mater. Article in press and available online (2007).
35.) S. Zhou, Z. Fu, J. Zhang, and S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG: Re (Re= Ce3+, Pr3+, Tb3+),” J. Lumin., 118, 179-185 (2006).
36.) D. Pawlak, Z. Frukacz, Z. Mierczyk, A. Suchocki,and J. Zachara, “Spectroscopic and crystallographic studies of YAG:Pr4+ single crystals,” J. Alloy. Compd. 275-277 361-364 (1998).
37.) M. Sekita, Y. Miyazawa, S. Morita, H. Sekiwa, and Y. Sato, “Strong Tb3+ emission of TbAlO3 at room temperature,” Appl. Phys. Lett., 65 [9] (1994).
38.) L. Schuh, R. Metselaar and C. R. A. Catlow, “Computer modelling studies of defect structures and migration mechanisms in yttrium aluminum garnet,” J. Eur. Ceram. Soc.,7, 67-74 (1991).
39.) M. M. Kuklja, “Defects in yttrium aluminum perovskite and garnet crystals: atomistic study,” J. Phys.: Condens. Matter., 12, 2953-2967 (2000).
40.) M. Kh. Ashurov, A. F. Rakov, and R. A. Erzin, “Luminescence of defect centers in yttrium-aluminum garnet crystals,” Solid State Commun., 120, 491-494 (2001).
41.) S. A. Gramsch and L. R. Morss, “Synthesis and characterization of charge-substituted garnets YCaLnGa5O12 (Ln = Ce, Pr, Tb),” J. Alloy. Compd., 207/208, 432-435 (1994).
42.) G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin Heidelberg, 1994.
43.) P. Yang, P. Deng and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumines.,97, 51-54 (2002).
44.) S. Singh, W. A. Bonner, W. H. Grodkiewicz, M. Grass, L. G. van, and Uitert, “Nd-doped yttrium aluminum garnet with improved fluorescent lifetime of the 4F3/2 state,” Appl. Phys. Lett., 29, 343 (1976).
45.) 劉如熹和王健源,白光發光二極體製作技術-21 世紀人類的新曙光,全華圖書,台灣台北,2005。
46.) 劉如熹和劉宇恒,發光二極體用氧氮螢光粉介紹,全華圖書,台灣台北,2006。
47.) 鄭煜舜,鎂離子摻雜之 YAG:Tb 螢光粉體其晶體結構與光學性質,國立成功大學資源工程研究所碩士論文,95 年 6 月。
48.) 楊智量,藉 pH 值控制混合之固相反應製備的 YAG:Ce 粉體分析及其螢光性質,國立成功大學資源工程研究所碩士論文,94 年 6 月。
49.) 鄭兆祺,(Y1-xTbx)2.97Ce0.03Al5O12 螢光粉之型態、晶體結構、與螢光特性,國立成功大學資源工程研究所碩士論文,97 年 6 月。
50.) C. Y. Huang, “Thermal expansion behavior of sodium zirconium phosphate structure type materials,” Ph. D. thesis, The Pennsylvania State University, U. S. A. (1990).
51.) 劉文貴,(Na0.5K0.5)NbO3 - SrZrO3 系統之合成、分析、及介電性質,國立成功大學資源工程研究所碩士論文,民國 94 年。
52.) 歐建志,(Ba(1-x)Srx)5Nb4O15 陶瓷材料的結構與微波介電性質,國立成功大學資源工程研究所碩士論文,民國 94 年。
53.) 黃恩萍,角閃石類礦物之拉曼光譜研究,國立成功大學地球科學研究所碩士論文,民國 92 年。
54.) L. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, and K. Wozniak, “Structure of YAG crystals doped/substituted with Erbium and Ytterbium,” Inorg. Chem., 43, 7656-7664 (2004).
55.) Y. F. Chen, P. K. Lim, S. J. Lim, Y. J. Yang, L. J. Hu, H. P. Chiang, and W. S. Tse “Raman scattering investigation of Yb:YAG crystals growth by Czochralski method,” Raman Spectrosc., 34, 882-885 (2003).
56.) C. Camerlingoa, M. Leporeb, G.M. Gaetac, R. Riccioc, C. Riccioc, A. De Rosac, and M. De Rosab, “Er:YAG laser treatments on dentinesurface: micro-Raman spectroscopy and SEM analysis,” J. Dent., 32, 399–405 (2004).
57.) 鄭文昕,石榴子石之拉曼光譜研究,碩士論文,國立中央大學地質研究所,1997.
58.) Y. Iida, A. Towata, T. Tsugoshi, and M. Furukawa “In situ Raman monitoring of low-temperature synthesis of YAG from different starting materials,” Vib. Spctrosc., 19, 399–405(1999).
59.) J. F. Moulder, J. Chastain, and R. C. King, Handbook of x-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, Physical Electronics Division, Eden Prairie, Minnesota, USA.
60.) D. A. Pawlak, K. Woźniak, Z. Frukacz, T. L. Barr, D. Fiorentino, and S. Seal, “ESCA studies of yttrium aluminum garnets,” J. Phys. Chem., B 103, 1454-1461 (1999).
61.) Y. N. Xu and W. Y. Ching, “Electronic structure of yttrium aluminum garnet (Y3Al5O12),” Phys, Rev., B 59, 10530-10535 (1999).
62.) H. X. Dai, C. F. Ng, and C.T. Au, “SrCl2-Promoted REOx (Re = Ce, Pr, Tb) Catalysts for the Selective Oxidation of Ethane: A Study on performance and Defect Structures for Ethane Formation,” J. Cata., 199, 177-192 (2001).
63.) G. Kalkowski, G. Kaindl, G. Wortmann, D. Lentz, and S. Krause, “4f-ligand hybridization in CaF4 and TbF4 probed by core-level spectroscopies,” Phy. Rev., B 37, 1376-1382 (1998).
64.) E. Zych, and C. Brecher, “Temperature dependence of host-associated luminescence
from YAG transparent ceramic material,” J. Lumin., 90, 89~90 (2000).