| 研究生: |
麥軒偉 Mai, Hsuan-Wei |
|---|---|
| 論文名稱: |
草酸與果膠對316L不銹鋼銲件於氯化鈉水溶液中之腐蝕行為影響研究 Effects of oxalic acid and pectin on the corrosion behavior of 316L stainless steel weldment in NaCl solution |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 316L不銹鋼 、腐蝕抑制劑 、草酸 、果膠 、孔蝕 |
| 外文關鍵詞: | 316L stainless steel, corrosion inhibitor, oxalic acid, pectin, pitting corrosion |
| 相關次數: | 點閱:229 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討316L不銹鋼銲件銲道與母材於含有氯化鈉(NaCl)、草酸(Oxalic acid, H2C2O4)、果膠(D-Galacturonic Acid, pectin)等楊桃汁主要成份之水溶液中的耐蝕性質差異。銲道之微觀組織、組成相之晶體構造與分佈以及化學成分分佈等性質,利用掃瞄式電子顯微鏡(SEM)、X光繞射儀(XRD)及電子背向繞射儀(EBSD)等進行分析。銲件之母材與銲道之耐蝕性質則藉由動電位極化曲線、定電位等測試結果加以評估;電化學測試後試片之腐蝕形貌則以SEM加以觀察。
由金相及XRD分析結果可知,316L不銹鋼母材為γ-austinite之單相結構;銲道則呈δ-ferrite與γ-austinite 之雙相結構,經EBSD分析,其δ-ferrite所佔之面積分率約4%。
由動電位極化曲線測試的結果可知,在單組成之水溶液中,316L不銹鋼銲件(不論母材或銲道)在草酸或果膠水溶液中皆具有寬廣(超過1.1 V)的鈍化電位區間。於0.06 M氯化鈉水溶液中,316L不銹鋼母材與銲道的孔蝕敏感性有別,前者孔蝕電位為+0.37VSCE,遠高於後者(-0.13 VSCE)。在0.06 M氯化鈉水溶液中分別添加草酸及果膠,皆可促進316L不銹鋼銲道的鈍化而抑制孔蝕的發生。上述二種添加劑對於孔蝕的抑制效果與其濃度有關,對於銲道的孔蝕的抑制作用更為顯著。不過,當果膠添加於0.06 M氯化鈉水溶液中時,雖然仍可提升316L不銹鋼銲道的孔蝕電位而具有抑制孔蝕的效果,但是對於316L不銹鋼母材卻會使其孔蝕電位降低,而具有促進孔蝕的作用。
The corrosion behaviors of 316L stainless steel and its weld in the aqueous solution containing the main constituent in carambola juice, namely sodium chloride (NaCl), oxalic acid (H2C2O4) and pectin (D-Galacturonic Acid), respectively, were investigated. The crystal structure, phase and chemical composition distribution ,and the microstructure of the weld were analyzed by using SEM, XRD, and EBSD. The corrosion performance of both base metal and weld was evaluated by conducting potentiodynamic polarization curve measurement and potentiostatic etching in the above solutions. The corrosion morphology of the specimens after electrochemical tests was examined by SEM.
Metallography and XRD analyses indicated that the 316L stainless steel matrix exhibited single phase of γ-austinite, while the welded alloy exhibited a dual phase of γ-austinite and δ-ferrite. The area fraction of the δ-ferrite determined by EBSD was about 4%.
Polarization curve tests revealed that an over 1.1V range of passive potential for alloys of weld or base metal in the oxalic or pectin aqueous solution. However, pitting sensitivity was different between the weld and the matrix, having a pitting potential of +0.37VSCE and -0.13 VSCE for the former and later alloys, respectively 0.06M NaCl aqueous solution adding oxalic acid or pectin would inhibit the pitting corrosion at the weld, and the inhibitive effect of the former two additions was related to their concentration. However, the weld in the NaCl aqueous solution adding pectin would increase the pitting potential and inhibit the pitting corrosion, but the matrix alloy in the NaCl aqueous solution adding pectin would decrease the pitting potential and enhance the pitting corrosion.
[1]. Sindo Kou, “Welding Metallurgy”, A Wiley-Interscience publication, p. 368, 1987.
[2]. G. J. Fisher, and R. J. Maciag, “Handbook of stainless steel”, McGraw-Hill, p. 1, 1977.
[3]. K. L. Hsua, T. M. Ahna, and D. A. Rigney, “Friction, wear and microstructure of unlubricated austenitic stainless steels”, Wear, vol. 60, 1, p. 13, 1980.
[4]. R. A. Lula, “Stainless steel”, Rev. Sub. Edition, American Society for Metals, pp. 60-71, 1986.
[5]. A. Abou-Elazm, R. Abdel-Karim, I. Elmahallawi, and R. Rashad, “Correlation between the degree of sensitization and stress corrosion cracking susceptibility of type 304H stainless steel”, Corrosion Science, vol. 51, p. 203, 2009.
[6]. A. Abou-Elazm, I. Elmahallawi, R. Abdel-Karim, and R. Rashad, “Failure investigation of secondary super-heater tubes in a power boiler”, Engineering Failure Analysis, vol. 16, p. 433, 2009.
[7]. E. C. Bain, R. H. Aborn, and J. J. B. Rutherford, “The nature and prevention of intergranular corrosion in austenitic stainless steels”, Transactions of the American Society for Steel Treating, vol. 21, p. 481, 1933.
[8]. P. Zahumensky, S. Tuleja, J. Orszagova, J. Janovec, and V. Siladiova, “Corrosion resistance of 18Cr-12Ni-2,5Mo steel annealed at 500-1050℃”, Corrosion Science, vol. 41, p. 1305, 1999.
[9]. M. A. Goudett, and J. R. Scully, “Distributions of Cr depletion levels in sensitized AISI 304 stainless steel and its implications concerning intergranular corrosion phenomena”, Journal of the Electrochemical Society, vol. 140, p. 3425, 1993.
[10]. Z. Szlarska-Smialowska, A. Szummer, and M. Janik-Czachor, “Electron Microprobe Study of the Effect of Sulphide Inclusions on the Nucleation of Corrosion Pits in Stainless Steels”, British Corrosion Journal, vol. 5, p. 159, 1970.
[11]. P. Marcus, and J. Oudar, “Corrosion Mechanisms in Theory and Practice”, Marcel Dekker Inc., Ch.7,1995.
[12]. G S.Frankel, “Pitting Corrosion of Metals, A Review of the Critical Factors”, Journal of the Electrochemical Society, vol. 145, p. 2198, 1998.
[13]. H. H. Strehblow, “Nucleation and Repassivation of Corrosion Pits for Pitting on Iron and Nickel”, Materials and Corrosion, vol. 27, 11, pp. 792-799, 1976.
[14]. H. H. Strehblow, “Corrosion Mechanisms in Theory and Practice”, Marcel Dekker Inc., 1995.
[15]. T. P. Hoar, D. C. Mears, and G. P. Rothwell, “The relationships between anodic passivity, brightening and pitting”, Corros. Sci., vol. 5, p. 279, 1965.
[16]. Y. M. Kolotyrkin, “Mechanism of dissolution of iron-chromium alloys in sulfuric acid”, Dokl. Akad. Nauk SSSR, vol. 157, p. 422, 1964.
[17]. T. P. Hoar, and W. R. Jacob, “Breakdown of Passivity of Stainless Steel by Halide Ions”, Nature, vol. 216, p. 1299, 1967.
[18]. H. H. Uhlig, “Adsorbed and Reaction-Product Films on Metals”, J. Electrochem. vol. 97, 11, 1950.
[19]. H. H. Strehblow, “Corrosion Mechanisms in Theory and Practice”, P. Marcus and J. Oudar, Editors, Marcel Dekker, Inc., 1995.
[20]. K. J. Vetter and H. H. Strehblow, Ber. Bunsenges, “Localized corrosion potential and localized corrosion inhibition potential”, Physical Chemistry, vol. 74, p. 1024, 1970.
[21]. N. Sato, “A theory for breakdown of anodic oxide films on metals”, Electrochim. Acta, vol. 16, 10, p. 1683, 1971.
[22]. N. Sato, K. Kudo, and T. Noda, “The anodic oxide film on iron in neutral solution”, Electrochim Acta, vol. 16, 11, p. 1909, 1971.
[23]. R. G. Kelly, in Proceedings of Corrosion, Research Topical Symposia, F Mansfeld, W. H. Smyrl, . M.Kendig, and B. Shaw, Editors, NACE, Houston, TX, p. 81, 1997.
[24]. A. Thrnbull, in Advances in Localized Corrosion, H. Isaacs, U. Bertocci, J. Kruger, and S. Smialowska, Editors, NACE-9, NACE, Houston, TX, p. 359, 1990.
[25]. Z. Szlarska-Smialowska, “Pitting Corrosion of Metals”, NACE, 39, 1986.
[26]. K. Lorenz, and G. Medawar, “Corrosion of Austenitic Chromium-Nickel Steels with and without Nitrogen Additions and Their Resistance to Chloride Ions ”, Thyssen Forschung, vol. 1, No. 3, p. 97, 1969.
[27]. S. Bernhardsson, in: J. Charles, S. Bernhardsson (Eds.), Proceedings of the Duplex Stainless Steels, Beaune, vol. 1, p. 185, 1991.
[28]. R. F. A. Jargelius-Pettersson, “Application of the Pitting Resistance Equivalent Concept to Some Highly Alloyed Austenitic Stainless Steels”, Corrosion, vol. 54, No. 2, p. 162,1998.
[29]. N. Suutala, and M. Kurkela, in: Proceedings of the Stainless Steels, vol. 84, p. 240, 1984.
[30]. H. Ogawa, H. Omata, I. Itoh, and H. Okdada, Corrosion, vol. 34, p. 52, 1978.
[31]. K. Sugimoto, and Y. Sawada, “Role of alloyed molybdenum in austenitic stainless steels in the inhibition of pitting in neutral halide solutions”, Corrosion, vol. 32, p. 347, 1976.
[32]. C. D. S. Tuck, J. M. Sykes, and L. F. Garfias-Mesias, TWI Paper 15, 1994.
[33]. L. F. Garfias-Mesias, J. M. Sykes, and C. D. S. Tuck, “The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions”, Corrosion Science, vol. 38, p. 1939, 1996.
[34]. P. J. Uggowitzer, R. Magdowski, and M. O. Spiedel, “Nickel free high nitrogen austenitic steels”, ISIJ International, vol. 36, p. 901, 1996.
[35]. J. Wang, P. J. Uggowitzer, R. Magdowski, and M. O. Speidel, “Nickel-free duplex stainless steels”, Scripta Materialia, vol. 40, p. 123, 1999.
[36]. T. Gooch, in: Proceedings of the International Conference on Stainless Steels 87, The institute of Metals, York, 1987.
[37]. J. Menzel, W. Kirschner, and G. Stein, “High nitrogen containing Ni-free austenitic steels for medical applications”, ISIJ International, vol. 36, p. 893, 1996.
[38]. S. Bernhardsson, in: J. Charles, S. Bernhardsson (Eds.), Proceedings of Conference on Duplex Stainless steels 91, Les Editions de Physique, Les Ulis, France, p. 185, 1991.
[39]. M. O. Speidel, in: Proceedings of the 2nd Stainless steel World 2001, The Hague, Netherlands, p. 102, 2001.
[40]. G. Mori, and D. Bauernfeind, “Pitting and crevice corrosion of superaustenitic stainless steels”, Materials and Corrosion, vol. 55, p. 164, 2004.
[41]. M. A. Streicher, “Pitting Corrosion of 18Cr-8Ni Stainless Steel”, J. Electrochem. Soc., vol. 375, p. 103, 1956.
[42]. G. C. Wood, W. H. Sutton, J. A. Richardson, T. N. K. Riley, and A. G. Malherbe, in Localized Corrosion, R. W. Staehle, B. F. Brown, J. Kruger, and A. Agrawal, Editors, NACE-3, NACE, Houton, TX, 1974.
[43]. E. M. Breinan, B. H. Kear, and C. M. Banas, “Proceeding Material with Lasers”, Physics Today, pp. 44-50, 1976.
[44]. S. Kou, and Y. Le, “Alternating Grain Orientation and Weld Solidification Cracking”, Metall. Trans A, vol. 16A, pp. 1887-1896, 1985.
[45]. T. Ganaha, B. P. Pearce, and H. W. Kerr, “Grain Structure in Aluminum Alloy GTA Welds”, Metall. Trans. A, vol. 11A, pp. 1351-1359, 1980.
[46]. S. Kou, and Y. Le, “The Effect of Quenching on the Solidification Structure and Transformation Behavior of Stainless Steel Welds”, Metall. Trans. A, vol. 13A, pp. 1141-1152, 1982.
[47]. T. DebRoy, and S. A. David, “Physical processes in fusion welding”, Rev. Mod. Phys. , vol. 67, No. 1,p. 85, 1995.
[48]. H. Nakagawa, M. Katoh, F. Matsuda, and T. Senda, “Features in Weld Solidification Structure of High Purity Aluminum Sheet”, Trans. Jpn. Weld. Soc., vol. 4(1), p. 11, 1973.
[49]. G. A. Chadwick, “Metallography and Phase Transformations”, Russak and Company, Inc., 1972.
[50]. S. Kou, and Y. Le, “Grain Structure and Solidification Cracking in Oscillated Arc Welds of 5052 Aluminum Alloy”, Metall. Trans., vol. 16A, pp. 1345-1352, 1985.
[51]. M. J. Cieslak, and W. F. Savage, “Weldability and Solidification on Phenomena of Cast Stainless Steel”, Weld Journal, Vol. 59, pp. 136-146, 1980.
[52]. J. M. Vitek and S. A. David, “Microstuctural Modification Phenomena of Cast Stainless Steels by Rapid Solidification”, Metall. and Trans. A, Vol. 14A pp. 1833-1841, 1983.
[53]. C. D. Lundin, and C. P. D. Chou, “Fissuring in the Hazard HAZ Region of Austenitic Stainless Steel Welds”, Welding Journal, Vol. 64, pp. 113-118, 1985.
[54]. S. W. Dean, H. J. Deitzer, and C. A. Cooper, “Strong Acid Inhibition with Acetylenic Alcohols”, NACE National Conference, Houston, unpublished paper No. 69, 1979.
[55]. M. G. Fontana, and N. D. Greene, “Corrosion Engineering”, McGraw Hill, pp. 198-202, 1967.
[56]. E. McCafferty, “Mechanism of Corrosion Control by Inhibiting”, H. Leidheiser, Jr., Ed. Corrosion Control by Coatings, Science Princeton, p. 279, 1979.
[57]. H. H. Uhlig, “Corrosion and Corrorsion Control”, Second Edition, pp. 257-291, John Wiley, 1971.
[58]. M. Pourbaix, “Atlas of Electrochemical Equilibria in Aqueous Solutions”, Pergamon Press, pp. 256-289, 1966.
[59]. F. L. LaQue, “Behavior of Metals and Alloys in Sea Water”, The Corrosion Handbook, H. H. Uhlig, Ed., John Wiley, p.401, 1948.
[60]. Sheldon W. Dean, JR., Richard Derby, and Glenn T. Von Dem Bussche, “Inhibitor Types”, Materials Performance, vol. 22, p. 47, 1981.
[61]. I. L. Rosenfeld, “Crevice Corrosion of Metals and Alloys”, Localized Corrosion, B. F. Brown et. al., Ed., NACE, p. 378, 1974.
[62]. Hausler, R. H. in Brubaker, G. R. and Phipps, P. B. P. Editors, “Corrosion Chemistry”, ACS Symposium Series 89, p. 262, 1979.
[63]. “Cooling Water Treatment Manual”, TPC Publication No. 1, NACE, pp. 8-11, 1971.
[64]. A. W. Loginow, and E. H. Phelps, “Stress-Corrosion Cracking of Steels in Agricultural Ammonia”, Corrosion, vol. 18, p. 299t, 1962.
[65]. Avinash G. Patil, Darshana A. Patil, Anita V. Phatak, and Naresh Chandra, “PHYSICAL AND CHEMICAL CHARACTERISTIC OF CARAMBOLA (AVERRHOA CARAMBOLA L.) FRUIT AT THREE STAGES OF MATURITY”, IJABPT., vol. 1, issue 2, p. 624. 2010.
[66]. S. A. David, G. M. Goodwin, and D. N. Braski, “Solidification behaviour of austenitic stainless steel filler metals”, Weld. J., vol. 58, 11, p. 330, 1979.
[67]. S. A. David, “Ferrite morphology and variations in ferrite content in austenitic stainless steel welds”, Weld. J., vol. 60, p. 63, 1981.
[68]. J. C. Lippold and W. F. Savage, “Solidification of Austenitic Stainless Steel Weldments. 1--A.--Proposed Mechanism”, Weld. J., vol. 58, p. 362, 1979.
[69]. J. C. Lippold and W. F. Savage, “Solidification of Austenitic Stainless Steel Weldments. II.--The Effect of Alloy Composition on Ferrite Morphology”, Weld. J., vol. 59,p p. 48-58, 1980.
[70]. M. J. Cieslak, and W. F. Savage, “Weldability and Solidification Phenomena of Cast Stainless Steel”, Weld. J., vol. 59, p. 136, 1980.
[71]. M. J. Cieslak, A. M. Ritter, and W. F. Savage, “Solidification Cracking and Analytical Electron Microscopy of Austenitic Stainless Steel Weld Metals”, Weld. J., vol. 62, p. 1, 1982.
[72]. N. Ebrahimi, M. H. Moayed, and A. Davoodi, “Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium”, Corrosion Science, vol. 53, p.1278, 2011.
[73]. M. Oberndorfer, K. Thayer, and M. Kastenbauer, “Application limits of stainless steels in the petroleum industry”, Materials and Corrosion, vol. 55, p. 174, 2004.