簡易檢索 / 詳目顯示

研究生: 何國嘉
Ho, Kao-Chia
論文名稱: 以二階段酯化-轉酯化程序將高脂肪酸含量油品轉化為生質柴油
Conversion of free fatty acids-rich oil into biodiesel using a two-step catalytic esterification-transesterification process
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 132
中文關鍵詞: 生質柴油固態酸性觸媒固態鹼性觸媒廢食用油析因設計法二階段程序
外文關鍵詞: biodiesel, solid acidic catalyst, solid alkaline catalyst, waste cooking oil, factorial designs, two-step process
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用低成本、高自由脂肪酸(free fatty acids; FFAs)含量之廢食用油(waste cooking oil)為料源,進行生質柴油(biodiesel)之生產以降低生質柴油生產之成本。由於高FFAs含量會造成傳統轉酯化反應之問題,故本研究開發二階段程序進行生質柴油之製造,即先將油品進行酯化(esterification)步驟,在酸性觸媒的作用下,將脂肪酸與醇類反應並轉化為酯類,以達去除油品中游離脂肪酸之目的;接著,再進行轉酯化步驟,將油品中剩餘的三酸甘油酯(triglyceride)於鹼性觸媒的催化下,轉化為生質柴油。
    本研究中所使用之酸性觸媒部份,首先合成以不同元素構成之金屬複合氧化物做為固體酸性觸媒之載體,於其上披覆二氧化矽後嫁接磺酸根以做為酸性官能基,並進行催化能力之測試與比較。其中以本實驗室自行開發之鍶鐵金屬複合氧化物為載體之觸媒(SO42-/Sr7Fe10O22)具有較佳之催化能力,該觸媒在100oC下反應60分鐘可使得油酸轉化率達98%以上。另外,該觸媒在重覆使用9次以後轉化率仍可達到79.5%以上。而鹼性觸媒部份,則以自行開發之固體鹼性觸媒矽酸鍶(Sr2SiO4)做為觸媒催化進行轉酯化反應,研究發現大豆油在30分鐘即可達92%的轉化率,若以氧化鍶(SrO)於相同反應條件及反應時間下進行轉酯化反應,僅能達到78%的轉化率,而氧化鈣(CaO)甚至幾乎沒有轉化率,可見相較於常見的氧化鈣以及氧化鍶,本實驗室自行開發之矽酸鍶有更加優異的催化能力。所合成的觸媒皆分別以氣體吸附比表面積測定儀(BET)、雷射光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、能量散佈分析儀(EDX)、傅立葉轉換紅外線光譜儀(FT-IR)、熱重分析儀(TGA)、程式溫控脫附儀(TPD)及正丁胺滴定法(n-Butyl amine titration)進行分析,以了解其物理化學性質。
    在二階段生質柴油生產程序方面,共使用兩種酸性觸媒與兩種鹼性觸媒進行最佳化程序之探討。首先以由大豆油與油酸組成之模擬油分別進行酯化以及轉酯化步驟的反應條件最佳化,並以析因設計法(The factorial designs)與操作成本進行反應條件之篩選,以獲得最佳的二階段程序反應條件。最後,在以模擬油測試完整程序之最佳化條件後,再實際以廢食用油進行驗證。結果顯示,在第一階段酯化反應時,以硫酸為觸媒的最佳化酯化反應條件為100oC反應60分鐘,而對於SO42-/Sr7Fe10O22而言則是100oC反應90分鐘。而在轉酯化步驟方面,氫氧化鈉與矽酸鍶之最佳反應條件均為60oC反應40分鐘。此外,不論使用模擬油或廢食用油來進行兩階段程序時,其生質柴油產率均能達到90%以上。

    In this study, the low-grade oil source containing high free fatty acid content (such as waste cooking oil) to lower the cost of biodiesel production. Since the waste cooking oil used has high content of free fatty acids (FFAs) which cause problems on transesterification due to saponification that consumes alkaline catalysts with free fatty acids to form soap. As a consequence, a two-step process was developed to solve the problems resulting from FFAs in the oil used. This two-step process consists of sequential esterification and transesterification steps. As for acidic catalysts used for esterification, we first examined the catalytic performance of several self-developed solid acidic catalysts generated by graft acidic functional group on the different bivalent metal-based magnetic ferrites with silicon oxide shell. Strontium ferrite shows the best performance among all tested ferrites on the acidic catalyst preparation. Therefore, the strontium ferrite-based acidic catalyst (SFA) was selected to perform the esterification experiments. SFA could not only reach a FFA conversion of over 98% in 60 min of esterification, but also can be recovered easily by a magnet. A biodiesel production of 79.5% could be achieved after recycling the catalyst for 10 time. As for the alkaline catalyst used in transesterification, silicate strontium (Sr2SiO4) had an excellently catalytic reactivity, as a 92% triglyceride conversion could be reached in 30 min, suggesting that the Sr2SiO4 catalyst was much better for transesterification than commonly used CaO and SrO catalysts. On the two-step process, esterification and transesterification steps were performed separately to identify the optimum operating conditions by factorial designs with the consideration of the operating cost. After that, the two reactions were performed in series using simulated oil as feedstock to verify the obtained optimal operating conditions. Finally, waste cooking oil taken from a local stallman was used to perform an actual operation. The optimum conditions for esterification by sulfuric acid and SFA were at 100oC for 60 min and at 100oC for 90 min, respectively. In addition, the conversion of triglyceride was over 90% using both sodium hydroxide and Sr2SiO4 catalysts via transesterification reaction with an optimal condition of 60oC for 40 min regardless of oil sources used.

    Abstract (摘要) I Abstract III Acknowledgement V Contents VII List of Tables XI List of Figures XIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and purpose 2 1.3 The research scheme 3 Chapter 2 Literature Review 5 2.1 Biodiesel 5 2.2 Transesterification process to produce methyl esters 7 2.2.1 Background 7 2.2.2 Characteristics and the sources of raw materials 8 2.2.3 Waste cooking oil 9 2.3 Catalysis used for making biodiesel 11 2.3.1 Homogeneously base-catalyzed transesterification 19 2.3.2 Homogeneously acid-catalyzed transesterification 20 2.3.3 Homogeneously acid and base-catalyzed esterification and transesterification: two steps 25 2.3.4 Heterogeneously base-catalyzed transesterification 25 2.3.5 Heterogeneously acid-catalyzed transesterification 30 2.3.5.1 Zirconium oxide (ZrO2) 31 2.3.5.2 Titanium oxide (TiO2) 31 2.3.5.3 Tin oxide (SnO2) 32 2.3.5.4 Zeolites 32 2.3.5.5 Sulfonic ion-exchange resin 33 2.3.5.6 Sulfate modified meso-structural silica 33 2.3.6 Enzyme catalyzed transesterification 34 2.4 Magnetic supporter: ferrite 35 2.4.1 Structure of ferrite 35 2.4.2 Synthesis of ferrite 38 2.4.2.1 Conventional synthesis of ferrite: calcining 38 2.4.2.2 Non-conventional synthesis of ferrite 38 Chapter 3 Material and Methods 41 3.1 Material 41 3.2 Equipment 42 3.3 Analysis instrument 42 3.3.1 Measure surface area by BET 42 3.3.2 Structure analysis by X-ray diffraction (XRD) 43 3.3.3 Micrographics by scanning electron microscope (SEM) 44 3.3.4 Analysis elements of a sample by energy-dispersive X-ray spectroscopy (EDX) 45 3.3.5 Identify samples by Fourier transform infrared spectroscopy (FT-IR) 45 3.3.6 Weight loss examine by thermal gravimetric analysis (TGA) 46 3.3.7 Analysis of biodiesel conversion by gas chromatography (GC) 47 3.3.8 Strength of alkaline catalysts by temperature programmed desorption (TPD) 48 3.4 Analytical methods 49 3.4.1 Biodiesel conversion of esterification and transesterification analysis by GC 49 3.4.2 Determination of acidic active sites on the catalysts’ surface 50 3.4.3 The catalytic properties of the catalysts 51 3.5 Preparation of catalysts 51 3.5.1 Synthesis and decoration of magnetic supporter: ferrites 51 3.5.2 Synthesis strontium silicate as alkaline catalyst 52 3.6 Catalytic properties 54 3.6.1 Acidic catalysts for esterification 54 3.6.2 Alkaline catalyst for transesterification 54 3.6.3 Recovery of strontium ferrite after use 54 3.6.4 Surface modification of catalyst 55 3.7 Optimization and operational properties in the two-step reaction 55 3.7.1 Best individual operational conditions for esterification and transesterification 55 3.7.2 Examination of the two-step biodiesel production for simulated oil and waste cooking oil 56 Chapter 4 Solid Acidic Catalyst: Strontium Ferrite, Sr7Fe10O22 58 4.1 Effect of the compositions in the supporter on the catalytic reactivity 58 4.2 Effect of strontium content in the supporter on the catalytic reactivity 68 4.3 Effects of the amount of TEOS, the amount of sulfuric acid, and the calcination temperature on the catalytic reactivity 70 4.4 The catalytic properties of SO42-/Sr7Fe10O22 74 4.5 Regeneration of SO42-/Sr7Fe10O22 80 Chapter 5 Solid Alkaline Catalyst: Strontium Silicate 86 5.1 Process of making strontium silicate 86 5.1.1 The effect of the titration order in the precursor synthesis on catalytic reactivity of strontium silicate 86 5.1.2 The temperature program of calcination 87 5.2 Comparison of catalytic performance between strontium silicate (Sr2SiO4), calcium oxide (CaO), strontium oxide (SrO) and sodium hydroxide (NaOH) 90 5.3 Effect of strontium content in strontium silicate on transesterification 94 5.4 Repeated test of Sr2SiO4 96 Chapter 6 Optimization and Operating of Two-step Reaction 99 6.1 Waste oil simulation and catalyst selection 99 6.2 The factorial design 99 6.3 Optimization of esterification 101 6.4 Optimization of transesterification 105 6.5 Kinetics analysis of operational conditions 108 6.5.1 Kinetics of oleic acid esterification by using Sr7Fe10O22 as catalyst in a batch reactor 108 6.5.2 Kinetics of soybean oil transesterification by using Sr2SiO4 as catalyst in a batch reactor 112 6.6 Two-step biodiesel production in series 117 Chapter 7 Conclusions 124 References 126

    Agarwal, A. K. Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines. Progress in Energy and Combustion Science. 33:233-271. 2007.
    Asakuma, Y., Maeda, K., Kuramochi, H. and Fukui, K. Theoretical Study of the Transesterification of Triglycerides to Biodiesel Fuel. Fuel. 88:786-791. 2009.
    Atadashi, I. M., Aroua, M. K. and Aziz, A. A. Biodiesel Separation and Purification: A Review. Renewable Energy. 36:437-443. 2010.
    Atadashi, I. M., Aroua, M. K. and Aziz, A. A. High Quality Biodiesel and Its Diesel Engine Application: A Review. Renewable & Sustainable Energy Reviews. 14:1999-2008. 2010.
    Bajaj, A., Lohan, P., Jha, P. N. and Mehrotra, R. Biodiesel Production through Lipase Catalyzed Transesterification: An Overview. Journal of Molecular Catalysis B-Enzymatic. 62:9-14. 2010.
    Balaji, B. S. and Chanda, B. M. Simple and High Yielding Syntheses of Beta-Ketoesters Catalysed by Zeolites. Tetrahedron. 54:13237-13252. 1998.
    Balat, M. and Balat, H. Progress in Biodiesel Processing. Applied Energy. 87:1815-1835. 2010.
    Balat, M., Balat, H. and Oz, C. Progress in Bioethanol Processing. Progress in Energy and Combustion Science. 34:551-573. 2008.
    Brito, A., Borges, M. E. and Otero, N. Zeolite Y as a Heterogeneous Catalyst in Biodiesel Fuel Production from Used Vegetable Oil. Energy & Fuels. 21:3280-3283. 2007.
    Brunschwig, C., Moussavou, W. and Blin, J. Use of Bioethanol for Biodiesel Production. Progress in Energy and Combustion Science. 38:283-301. 2012.
    Canakci, M. and Van Gerpen, J. Biodiesel Production Via Acid Catalysis. Transactions of the Asae. 42:1203-1210. 1999.
    Canakci, M. and Van Gerpen, J. A Pilot Plant to Produce Biodiesel from High Free Fatty Acid Feedstocks. Trans ASAE (Am Soc Agric Eng). 46:945-954. 2003.
    Cantrell, D. G., Gillie, L. J., Lee, A. F. and Wilson, K. Structure-Reactivity Correlations in Mgal Hydrotalcite Catalysts for Biodiesel Synthesis. Applied Catalysis a-General. 287:183-190. 2005.
    Cao, F., Chen, Y., Zhai, F., Li, J., Wang, J., Wang, X., Wang, S. and Zhu, W. Biodiesel Production from High Acid Value Waste Frying Oil Catalyzed by Superacid Heteropolyacid. Biotechnology and Bioengineering. 101:93-100. 2008.
    Cavalcante, K. S. B., Penha, M. N. C., Mendonça, K. K. M., Louzeiro, H. C., Vasconcelos, A. C. S. and Maciel, A. P. Optimization of Transesterification of Castor Oil with Ethanol
    Using a Central Composite Rotatable Design (Ccrd). Fuel. 89:1172-1176. 2009.
    Chen, G., Ying, M. and Li, W. Enzymatic Conversion of Waste Cooking Oils into Alternative Fuel-Biodiesel. Applied Biochemistry and Biotechnology. 132:911-921. 2006.
    Chen, H., Peng, B., Wang, D. and Wang, J. Biodiesel Production by the Transesterification of Cottonseed Oil by Solid Acid Catalysts. Front Chem Eng Chin. 1:11-15. 2007.
    Chen, X., Xu, Z. and Okuhara, T. Liquid Phase Esterification of Acrylic Acid with 1-Butanol Catalyzed by Solid Acid Catalysts. Applied Catalysis a-General. 180:261-269. 1999.
    Chin, L. H., Hameed, B. H. and Ahmad, A. L. Process Optimization for Biodiesel Production from Waste Cooking Palm Oil (Elaeis Guineensis) Using Response Surface Methodology. Energy & Fuels. 23:1040-1044. 2009.
    Corma, A. and Garcia, H. Organic Reactions Catalyzed over Solid Acids. Catalysis Today. 38:257-308. 1997.
    Cvengros, J. and Cvengrosova, Z. Used Frying Oils and Fats and Their Utilization in the Production of Methyl Esters of Higher Fatty Acids. Biomass & Bioenergy. 27:173-181. 2004.
    de Almeida, R. M., Noda, L. K., Goncalves, N. S., Meneghetti, S. M. P. and Meneghetti, M. R. Transesterification Reaction of Vegetable Oils, Using Superacid Sulfated TiO2-Base Catalysts. Applied Catalysis a-General. 347:100-105. 2008.
    Demirbas, A. Biodiesel Production from Vegetable Oils Via Catalytic and Non-Catalytic Supercritical Methanol Transesterification Methods. Progress in Energy and Combustion Science. 31:466-487. 2005.
    Demirbas, A. Progress and Recent Trends in Biodiesel Fuels. Energy Conversion and Management. 50:14-34. 2009.
    Di Serio, M., Ledda, M., Cozzolino, M., Minutillo, G., Tesser, R. and Santacesaria, E. Transesterification of Soybean Oil to Biodiesel by Using Heterogeneous Basic Catalysts. Industrial & Engineering Chemistry Research. 45:3009-3014. 2006.
    Encinar, J. M., Gonzalez, J. F., Rodriguez, J. J. and Tejedor, A. Biodiesel Fuels from Vegetable Oils: Transesterification of Cynara Cardunculus L. Oils with Ethanol. Energy & Fuels. 16:443-450. 2002.
    Felizardo, P., Correia, M. J. N., Raposo, I., Mendes, J. F., Berkemeier, R. and Bordado, J. M. Production of Biodiesel from Waste Frying Oil. Waste Management. 26:487-494. 2006.
    Feng, Y. H., He, B. Q., Cao, Y. H., Li, J. X., Liu, M., Yan, F. and Liang, X. P. Biodiesel Production Using Cation-Exchange Resin as Heterogeneous Catalyst. Bioresource Technology. 101:1518-1521. 2010.
    Freedman, B., Pryde, E. H. and Mounts, T. L. Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable-Oils. Journal of the American Oil Chemists Society. 61:1638-1643. 1984.
    Fukuda, H., Kondo, A. and Noda, H. Biodiesel Fuel Production by Transesterification of Oils. Journal of Bioscience and Bioengineering. 92:405-416. 2001.
    Furuta, S., Matsuhashi, H. and Arata, K. Biodiesel Fuel Production with Solid Superacid Catalysis in Fixed Bed Reactor under Atmospheric Pressure. Catalysis Communications. 5:721-723. 2004.
    Furuta, S., Matsuhashi, H. and Arata, K. Catalytic Action of Sulfated Tin Oxide for Etherification and Esterification in Comparison with Sulfated Zirconia. Applied Catalysis a-General. 269:187-191. 2004.
    Ganesan, D., Rajendran, A. and V., T. An Overview on the Recent Advances in the Transesterification of Vegetable Oils for Biodiesel Production Using Chemical and Biocatalysts. Reviews in Environmental Science and Biotechnology. 8:2009.
    Gazmuri, A. M. and Bouchon, P. Analysis of Wheat Gluten and Starch Matrices During Deep-Fat Frying. Food Chem. 115:999-1005. 2009.
    Goldman, A. Modern Ferrite Technology. Springer. Pittsburgh, USA. 2005.
    Granados, M. L., Poves, M. D. Z., Alonso, D. M., Mariscal, R., Galisteo, F. C., Moreno-Tost, R., Santamaria, J. and Fierro, J. L. G. Biodiesel from Sunflower Oil by Using Activated Calcium Oxide. Applied Catalysis B-Environmental. 73:317-326. 2007.
    Gryglewicz, S. Rapeseed Oil Methyl Esters Preparation Using Heterogeneous Catalysts. Bioresource Technology. 70:249-253. 1999.
    Guan, G., Kusakabe, K. and Yamasaki, S. Tri-Potassium Phosphate as a Solid Catalyst for Biodiesel Production from Waste Cooking Oil. Fuel Processing Technology. 90:520-524. 2009.
    Hagen, J. Industrial Catalysis: A Practical Approach. Germany: Wiley-VCH. Weinheim. 2006.
    Halim, S. F. A. and Kamaruddin, A. H. Catalytic Studies of Lipase on Fame Production from Waste Cooking Palm Oil in a Tert-Butanol System. Process Biochemistry. 43:1436-1439. 2008.
    Jacobson, K., Gopinath, R., Meher, L. C. and Dalai, A. K. Solid Acid Catalyzed Biodiesel Production from Waste Cooking Oil. Applied Catalysis B-Environmental. 85:86-91. 2008.
    Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L. and Jenvanitpanjakul, P. Transesterification of Crude Palm Kernel Oil and Crude Coconut Oil by Different Solid Catalysts. Chemical Engineering Journal. 116:61-66. 2006.
    Karmakar, A., Karmakar, S. and Mukherjee, S. Properties of Various Plants and Animals Feedstocks for Biodiesel Production. Bioresource Technology. 101:7201-7210. 2010.
    Kiss, F. E., Jovanovic, M. and Boskovic, G. C. Economic and Ecological Aspects of Biodiesel Production over Homogeneous and Heterogeneous Catalysts. Fuel Processing Technology. 91:1316-1320. 2010.
    Knothe, G. Biodiesel and Renewable Diesel: A Comparison. Progress in Energy and Combustion Science. 36:364-373. 2010.
    Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S. and Hidaka, J. Calcium Oxide as a Solid Base Catalyst for Transesterification of Soybean Oil and Its Application to Biodiesel Production. Fuel. 87:2798-2806. 2008.
    Kouzu, M., Yamanaka, S., Hidaka, J. and Tsunomori, M. Heterogeneous Catalysis of Calcium Oxide Used for Transesterification of Soybean Oil with Refluxing Methanol. Applied Catalysis a-General. 355:94-99. 2009.
    Kulkarni, M. G. and Dalai, A. K. Waste Cooking Oil-an Economical Source for Biodiesel: A Review. Industrial & Engineering Chemistry Research. 45:2901-2913. 2006.
    Lam, M. K., Lee, K. T. and Mohamed, A. R. Sulfated Tin Oxide as Solid Superacid Catalyst for Transesterification of Waste Cooking Oil: An Optimization Study. Applied Catalysis B-Environmental. 93:134-139. 2009.
    Lam, M. K., Lee, M. T. and Mohamed, A. R. Homogeneous, Heterogeneous and Enzymatic Catalysis for Transesterification of High Free Fatty Acid Oil (Waste Cooking Oil) to Biodiesel: A Review. Biotechnology Advances. 28:500-518. 2010.
    Leung, D. Y. C. and Guo, Y. Transesterification of Neat and Used Frying Oil: Optimization for Biodiesel Production. Fuel Processing Technology. 87:883-890. 2006.
    Leung, D. Y. C., Wu, X. and Leung, M. K. H. A Review on Biodiesel Production Using Catalyzed Transesterification. Applied Energy. 87:1083-1095. 2010.
    Li, N. W., Zong, M. H. and Wu, H. Highly Efficient Transformation of Waste Oil to Biodiesel by Immobilized Lipase from Penicillium Expansum. Process Biochemistry. 44:685-688. 2009.
    Lin, L., Zhou, C. S., Vittayapadung, S., Shen, X. Q. and Dong, M. D. Opportunities and Challenges for Biodiesel Fuel. Applied Energy. 88:1020-1031. 2011.
    Lotero, E., Liu, Y. J., Lopez, D. E., Suwannakarn, K., Bruce, D. A. and Goodwin, J. G. Synthesis of Biodiesel Via Acid Catalysis. Industrial & Engineering Chemistry Research. 44:5353-5363. 2005.
    Lou, W. Y., Zong, M. H. and Duan, Z. Q. Efficient Production of Biodiesel from High Free Fatty Acid-Containing Waste Oils Using Various Carbohydrate-Derived Solid Acid Catalysts. Bioresource Technology. 99:8752-8758. 2008.
    Ma, F. R. and Hanna, M. A. Biodiesel Production: A Review. Bioresource Technology. 70:1-15. 1999.
    Mbaraka, I. K., McGuire, K. J. and Shanks, B. H. Acidic Mesoporous Silica for the Catalytic Conversion of Fatty Acids in Beef Tallow. Industrial & Engineering Chemistry Research. 45:3022-3028. 2006.
    Mbaraka, I. K. and Shanks, B. H. Conversion of Oils and Fats Using Advanced Mesoporous Heterogeneous Catalysts. Journal of the American Oil Chemists Society. 83:79-91. 2006.
    Melero, J. A., Iglesias, J. and Morales, G. Heterogeneous Acid Catalysts for Biodiesel Production: Current Status and Future Challenges. Green Chemistry. 11:1285-1308. 2009.
    Miao, C. X. and Gao, Z. Preparation and Properties of Ultrafine So42-/Zro2 Superacid Catalysts. Materials Chemistry and Physics. 50:15-19. 1997.
    Mittelbach, M. and Enzelsberger, H. Transesterification of Heated Rapeseed Oil for Extending Diesel Fuel. Journal of the American Oil Chemists Society. 76:545-550. 1999.
    Nawar, W. W. Chemical-Changes Lipids Produced by Thermal-Processing. Journal of Chemical Education. 61:299-302. 1984.
    Nigam, P. S. and Singh, A. Production of Liquid Biofuels from Renewable Resources. Progress in Energy and Combustion Science. 37:52-68. 2011.
    Omota, F., Dimian, A. C. and Bliek, A. Fatty Acid Esterification by Reactive Distillation: Part 2 - Kinetics-Based Design for Sulphated Zirconia Catalysts. Chemical Engineering Science. 58:3175-3185. 2003.
    Ozbay, N., Oktar, N. and Tapan, N. A. Esterification of Free Fatty Acids in Waste Cooking Oils (Wco): Role of Ion-Exchange Resins. Fuel. 87:1789-1798. 2008.
    Paakkonen, P. K. and Krause, A. O. I. Diffusion and Chemical Reaction in Isoamylene Etherification within a Cation-Exchange Resin. Applied Catalysis a-General. 245:289-301. 2003.
    Park, Y.-M., Lee, D.-W., Kirn, D.-K., Lee, J.-S. and Lee, K.-Y. The Heterogeneous Catalyst System for the Continuous Conversion of Free Fatty Acids in Used Vegetable Oils for the Production of Biodiesel. Catalysis Today. 131:238-243. 2008.
    Patil, P., Deng, S. G., Rhodes, J. I. and Lammers, P. J. Conversion of Waste Cooking Oil to Biodiesel Using Ferric Sulfate and Supercritical Methanol Processes. Fuel. 89:360-364. 2010.
    Peng, B.-X., Shu, Q., Wang, J.-F., Wang, G.-R., Wang, D.-Z. and Han, M.-H. Biodiesel Production from Waste Oil Feedstocks by Solid Acid Catalysis. Process Safety and Environmental Protection. 86:441-447. 2008.
    Pinzi, S., Garcia, I. L., Lopez-Gimenez, F. J., de Castro, M. D. L., Dorado, G. and Dorado, M. P. The Ideal Vegetable Oil-Based Biodiesel Composition: A Review of Social, Economical and Technical Implications. Energy & Fuels. 23:2325-2341. 2009.
    Qi, D. H., Geng, L. M., Chen, H., Bian, Y. Z., Liu, J. and Ren, X. C. Combustion and Performance Evaluation of a Diesel Engine Fueled with Biodiesel Produced from Soybean Crude Oil. Renewable Energy. 34:2706-2713. 2009.
    Ropero-Vega, J. L., Aldana-Perez, A., Gomez, R. and Nino-Gomez, M. E. Sulfated Titania TiO2/SO42- : A Very Active Solid Acid Catalyst for the Esterification of Free Fatty Acids with Ethanol. Applied Catalysis a-General. 379:24-29. 2010.
    Sidibe, S. S., Blin, J., Vaitilingom, G. and Azoumah, Y. Use of Crude Filtered Vegetable Oil as a Fuel in Diesel Engines State of the Art: Literature Review. Renewable & Sustainable Energy Reviews. 14:2748-2759. 2010.
    Singh, S. P. and Singh, D. Biodiesel Production through the Use of Different Sources and Characterization of Oils and Their Esters as the Substitute of Diesel: A Review. Renewable & Sustainable Energy Reviews. 14:200-216. 2010.
    Srilatha, K., Prabhavathi Devi, B. L. A., Lingaiah, N., Prasad, R. B. N. and Sai Prasad, P. S. Biodiesel Production from Used Cooking Oil by Two-Step Heterogeneous Catalyzed Process. Bioresource Technology. 119:6. 2012.
    Suarez, P. A. Z., Meneghetti, S. M. P., Meneghetti, M. R. and Wolf, C. R. Transformation of Triglycerides into Fuels, Polymers and Chemicals: Some Applications of Catalysis in Oleochemistry. Quimica Nova. 30:667-676. 2007.
    Vasudevan, P. and Fu, B. Environmentally Sustainable Biofuels: Advances in Biodiesel Research. Waste and Biomass Valorization. 1:47-63. 2010.
    Vicente, G., Coteron, A., Martinez, M. and Aracil, J. Application of the Factorial Design of Experiments and Response Surface Methodology to Optimize Biodiesel Production. Industrial Crops and Products. 8:29-35. 1998.
    Vyas, A. P., Verma, J. L. and Subrahmanyam, N. A Review on Fame Production Processes. Fuel. 89:1-9. 2010.
    Wan Omar, W. N. N., Nordin, N., Mohamed, M. and Amin, N. A. S. A Two-Step Biodiesel Production from Waste Cooking Oil: Optimization of Pre-Treatment Step. Journal of Applied Sciences. 9:3098-3103. 2009.
    Wang, Y., Ou, S. Y., Liu, P. Z., Xue, F. and Tang, S. Z. Comparison of Two Different Processes to Synthesize Biodiesel by Waste Cooking Oil. Journal of Molecular Catalysis a-Chemical. 252:107-112. 2006.
    Watanabe, Y., Shimada, Y., Sugihara, A. and Tominaga, Y. Enzymatic Conversion of Waste Edible Oil to Biodiesel Fuel in a Fixed-Bed Bioreactor. Journal of the American Oil Chemists Society. 78:703-707. 2001.
    Wu, W. H., Foglia, T. A., Marmer, W. N. and Phillips, J. G. Optimizing Production of Ethyl Esters of Grease Using 95% Ethanol by Response Surface Methodology. Journal of the American Oil Chemists Society. 76:517-521. 1999.
    Xie, W. L., Peng, H. and Chen, L. G. Calcined Mg-Al Hydrotalcites as Solid Base Catalysts for Methanolysis of Soybean Oil. Journal of Molecular Catalysis a-Chemical. 246:24-32. 2006.
    Yan, S. L., Salley, S. O. and Ng, K. Y. S. Simultaneous Transesterification and Esterification of Unrefined or Waste Oils over Zno-La2o3 Catalysts. Applied Catalysis a-General. 353:203-212. 2009.
    Ying, M. and Chen, G. Study on the Production of Biodiesel by Magnetic Cell Biocatalyst Based on Lipase-Producing Bacillus Subtilis. Applied Biochemistry and Biotechnology. 137:793-803. 2007.
    Zabeti, M., Daud, W. and Aroua, M. K. Activity of Solid Catalysts for Biodiesel Production: A Review. Fuel Processing Technology. 90:770-777. 2009.
    Zhang, X., Li, J., Chen, Y., Wang, J., Feng, L., Wang, X. and Cao, F. Heteropolyacid Nanoreactor with Double Acid Sites as a Highly Efficient and Reusable Catalyst for the Transesterification of Waste Cooking Oil. Energy & Fuels. 23:4640-4646. 2009.
    Zhang, Y., Dube, M. A., McLean, D. D. and Kates, M. Biodiesel Production from Waste Cooking Oil: 1. Process Design and Technological Assessment. Bioresource Technology. 89:1-16. 2003.
    Zheng, S., Kates, M., Dube, M. A. and McLean, D. D. Acid-Catalyzed Production of Biodiesel from Waste Frying Oil. Biomass & Bioenergy. 30:267-272. 2006.

    無法下載圖示 校內:2024-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE