| 研究生: |
謝家豐 Hsieh, Chia-Feng |
|---|---|
| 論文名稱: |
奈米纖維素強化聚乳酸複合材料的應用研究 Applications of nanocrystalline cellulose reinforced polylactic acid (PLA) composites |
| 指導教授: |
施士塵
Shi, Shih-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 聚乳酸 、奈米纖維素 、雙螺桿混煉 、射出成型 、磨耗性質 、單面膠黏拉伸試驗 |
| 外文關鍵詞: | Polylactic acid, nanocrystalline cellulose, Injection molding, wear properties, single lap shear test |
| 相關次數: | 點閱:218 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
天然纖維增強聚合物複合材料的應用範圍在各個工程領域迅速發展。本研究主要探討奈米纖維素(nanocrystalline cellulose, CNC)的添加對聚乳酸(polylactic acid, PLA)複合材料的機械性質、熱穩定性、磨耗特性和親疏水特性以及應用於工程塑膠的可行性。
研究顯示CNC在沒有經過改質的狀態下直接與PLA複合的強化效果並不理想,即便設計螺桿組態來改善分散,最終結果也相當有限。而結晶度因為過度聚集抑制了異質成核的發生;拉伸結果在含量1 wt.%CNC時得到最優越的韌性斷裂,隨著含量增加,其中的楊氏係數與斷裂強度分別上升6.2%和2.1%。而CNC有助於增加抗磨耗性,PLA/CNC在磨耗時受CNC的保護,因此磨耗行為有所提升。膠黏部分透過電漿改質,使表面同時產生化學與物理作用,進而提升20.9%的最大膠黏抗剪切強度。
關鍵字:聚乳酸、奈米纖維素、雙螺桿混煉、射出成型、磨耗性質、
Nanocrystalline cellulose (CNC) is a good candidate of reinforcement for composites, The application of nanocrystalline cellulose as fabric or structural reinforcements widely introduced in the a variety of industries. This studies the properties of CNC by using twin screw extrusion to combine PLA and 1, 3, and 5wt.% CNC and produces ASTM test specimens through inject molding. The composite material obtained through inject molding sees an increase in the strength compared to pure PLA. However, from the experiments, it was discovered that CNC aggregates within PLA and as a result has a limited enhancement to the strength of PLA. In addition, an improvement in the wear resistance of PLA/CNC composite material was observed. It was also observed that adding 5wt.% CNC to the composite material can reduce its friction coefficient. In addition, the adhesive shear strength of the composite was also improved by atmospheric plasma treatment when nozzles were used at a distance of 12mm. Surface roughness was reduced by 62%, thereby increasing the shear strength of the composite.
key words : polylactic acid, nanocrystalline cellulose, injection molding, wear test, single lap shear test
[1] C. M. Agrawal, R. B. J. J. o. B. M. R. A. O. J. o. T. S. f. B. Ray, The Japanese Society for Biomaterials,, T. A. S. f. Biomaterials et al., “Biodegradable polymeric scaffolds for musculoskeletal tissue engineering,” vol. 55, no. 2, pp. 141-150, 2001.
[2] 威畯軸承展業有限公司. "塑膠軸承," 03/20, 2019; http://www.wigogo.com.tw/?f=Plastic-Physical-Characteristics.
[3] W. C. Orthwein, Clutches and brakes: Dekker New York, 1986.
[4] 楊斌, PLA聚乳酸環保塑膠 = Poly lactic acid plastic of environmental protection, 初版 ed., 臺北市: 五南, 2010.
[5] S. Domenek, and V. Ducruet, Characteristics and Applications of PLA: John Wiley & Sons, Inc, 2016.
[6] L.-T. Lim, R. Auras, and M. J. P. i. p. s. Rubino, “Processing technologies for poly (lactic acid),” vol. 33, no. 8, pp. 820-852, 2008.
[7] J. Ahmed, and S. K. Varshney, “Polylactides—chemistry, properties and green packaging technology: a review,” International journal of food properties, vol. 14, no. 1, pp. 37-58, 2011.
[8] S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review,” Adv Drug Deliv Rev, vol. 107, pp. 367-392, Dec 15, 2016.
[9] A. Chakrabarty, and Y. J. P. Teramoto, “Recent Advances in Nanocellulose Composites with Polymers: A Guide for Choosing Partners and How to Incorporate Them,” vol. 10, no. 5, pp. 517, 2018.
[10] Y. Habibi, L. A. Lucia, and O. J. J. C. r. Rojas, “Cellulose nanocrystals: chemistry, self-assembly, and applications,” vol. 110, no. 6, pp. 3479-3500, 2010.
[11] R. J. Moon, A. Martini, J. Nairn et al., “Cellulose nanomaterials review: structure, properties and nanocomposites,” vol. 40, no. 7, pp. 3941-3994, 2011.
[12] T. Shen, and S. J. B. j. Gnanakaran, “The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks,” vol. 96, no. 8, pp. 3032-3040, 2009.
[13] S. Jiang, G. Duan, J. Schöbel et al., “Short electrospun polymeric nanofibers reinforced polyimide nanocomposites,” vol. 88, pp. 57-61, 2013.
[14] H.-M. Ng, L. T. Sin, T.-T. Tee et al., “Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers,” vol. 75, pp. 176-200, 2015.
[15] Y. Peng, Y. Han, D. J. J. W. Gardner et al., “Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution,” vol. 44, no. 4, pp. 448-461, 2012.
[16] 胡德, 高分子物理與機械性質, 臺北市: 渤海堂.
[17] 顔清連, 實用流體力學 = Fluid mechanics, 初版 ed., 臺北市: 五南, 2015.
[18] R. S. Porter, and J. F. Johnson, "Temperature dependence of polymer viscosity. The influence of shear rate and stress." pp. 365-371.
[19] F. M. White, and I. Corfield, Viscous fluid flow: McGraw-Hill New York, 2006.
[20] 章宗穰, 運動中的分子 : 熱力學與反應動力學, 初版 ed., 臺北縣: 世潮, 2004.
[21] 尼爾森, and 林健樑, 流變學, 臺南巿: 復文.
[22] M. M. Cross, Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems, 1965.
[23] 劉士榮, 高分子加工, 初版 ed., 臺中市: 滄海書局.
[24] R. T. Fenner, Developments in the analysis of steady screw extrusion of polymers: Elsevier, 1977.
[25] Y. Wang, and J. L. White, Non-Newtonian flow modelling in the screw regions of an intermeshing corotating twin screw extruder: Elsevier, 1989.
[26] D. Bondeson, K. J. C. P. A. A. S. Oksman, and Manufacturing, “Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol,” vol. 38, no. 12, pp. 2486-2492, 2007.
[27] J. Shojaeiarani, D. S. Bajwa, and N. M. J. C. p. Stark, “Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites,” vol. 190, pp. 139-147, 2018.
[28] A. J. L. Marmur, “Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?,” vol. 19, no. 20, pp. 8343-8348, 2003.
[29] G. Whyman, E. Bormashenko, and T. J. C. P. L. Stein, “The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon,” vol. 450, no. 4-6, pp. 355-359, 2008.
[30] D. Bonn, and D. J. R. o. P. i. P. Ross, “Wetting transitions,” vol. 64, no. 9, pp. 1085, 2001.
[31] P.-G. J. R. o. m. p. De Gennes, “Wetting: statics and dynamics,” vol. 57, no. 3, pp. 827, 1985.
[32] R. N. J. I. Wenzel, and E. Chemistry, “Resistance of solid surfaces to wetting by water,” vol. 28, no. 8, pp. 988-994, 1936.
[33] E. Gadelmawla, M. Koura, T. Maksoud et al., “Roughness parameters,” vol. 123, no. 1, pp. 133-145, 2002.
[34] 張庭維, 經低溫大氣電漿表面改質之氧化鋯於膠原蛋白與羥丙基甲基纖維素複合溶液中磨潤性質之研究 = Tribology properties of low-temperature atmospheric pressure plasma modified Zirconia in collagen/HPMC solution.
[35] M. Noeske, J. Degenhardt, S. Strudthoff et al., “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,” International Journal of Adhesion and Adhesives, vol. 24, no. 2, pp. 171-177, Apr, 2004.
[36] F. M. J. T. J. o. P. C. Fowkes, “Additivity of intermolecular forces at interfaces. i. determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids1,” vol. 67, no. 12, pp. 2538-2541, 1963.
[37] F. M. J. I. Fowkes, and E. Chemistry, “Attractive forces at interfaces,” vol. 56, no. 12, pp. 40-52, 1964.
[38] R. J. J. J. o. a. s. Good, and technology, “Contact angle, wetting, and adhesion: a critical review,” vol. 6, no. 12, pp. 1269-1302, 1992.
[39] D. K. Owens, and R. J. J. o. a. p. s. Wendt, “Estimation of the surface free energy of polymers,” vol. 13, no. 8, pp. 1741-1747, 1969.
[40] N. J. A. e. De Bruyne, and a. technology, “The strength of glued joints,” vol. 16, no. 4, pp. 115-118, 1944.
[41] R. G. Budynas, Shigley's mechanical engineering design, 8th ed. ed., Boston :: McGraw-Hill, 2008.
[42] D. Bondeson, and K. J. C. I. Oksman, “Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites,” vol. 14, no. 7-9, pp. 617-630, 2007.
[43] N. Kagalkar, S. Srinivas, and B. J. M. T. P. Dhananjaya, “Determination of Shear Strength and Failure Type of the Sealant using Lap Shear Test,” vol. 5, no. 1, pp. 2752-2758, 2018.
[44] A. Jordá‐Vilaplana, L. Sánchez‐Nácher, V. Fombuena et al., “Improvement of mechanical properties of polylactic acid adhesion joints with bio‐based adhesives by using air atmospheric plasma treatment,” vol. 132, no. 32, 2015.
[45] 台中精機集團. "Injection Machine," 03/20, 2019; https://www.victortaichung.com/injection-machines/tw/vs-50-e.htm.
[46] L. Wei, U. P. Agarwal, L. Matuana et al., “Performance of high lignin content cellulose nanocrystals in poly (lactic acid),” vol. 135, pp. 305-313, 2018.
[47] A. Internation, "Standard Test Method for Tensile Properties of Plastics," D638-14, 2014.
[48] A. International, "Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding," 2014.
[49] M. Noeske, J. Degenhardt, S. Strudthoff et al., “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,” vol. 24, no. 2, pp. 171-177, 2004.
[50] 機械製圖, 臺北巿 :: 新學識文教.
[51] J. Izdebska-Podsiadły, and E. J. V. Dörsam, “Effects of argon low temperature plasma on PLA film surface and aging behaviors,” vol. 145, pp. 278-284, 2017.
[52] W. Yang, E. Fortunati, F. Dominici et al., “Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging,” vol. 79, pp. 1-12, 2016.
[53] C. Zhang, M. R. Salick, T. M. Cordie et al., “Incorporation of poly (ethylene glycol) grafted cellulose nanocrystals in poly (lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering,” vol. 49, pp. 463-471, 2015.
[54] M. Jonoobi, J. Harun, A. P. Mathew et al., “Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion,” vol. 70, no. 12, pp. 1742-1747, 2010.
[55] E. Fortunati, F. Luzi, D. Puglia et al., “Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves,” vol. 56, pp. 77-91, 2014.
[56] P. Zhang, D. Gao, P. P. Zou et al., “Preparation and thermomechanical properties of nanocrystalline cellulose reinforced poly(lactic acid) nanocomposites,” Journal of Applied Polymer Science, vol. 134, no. 14, pp. 9, Apr, 2017.
[57] N. Herrera, A. P. Mathew, K. J. C. S. Oksman et al., “Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties,” vol. 106, pp. 149-155, 2015.
[58] L. Quiles-Carrillo, S. Duart, N. Montanes et al., “Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil,” vol. 140, pp. 54-63, 2018.
[59] J. K. Muiruri, S. Liu, W. S. Teo et al., “Highly biodegradable and tough polylactic acid–cellulose nanocrystal composite,” ACS Sustainable Chemistry & Engineering, vol. 5, no. 5, pp. 3929-3937, 2017.
[60] B. Li, F.-X. Dong, X.-L. Wang et al., “Organically modified rectorite toughened poly (lactic acid): Nanostructures, crystallization and mechanical properties,” vol. 45, no. 11, pp. 2996-3003, 2009.
[61] P. K. Singh, and A. K. J. T. I. Singh, “An investigation on the thermal and wear behavior of polymer based spur gears,” vol. 118, pp. 264-272, 2018.
[62] S.-C. Shi, and J.-Y. Wu, “MoS2 Additives for Enhancing Tribological Performance of Hydroxypropyl Methylcellulose Biopolymer,” Smart Science, vol. 5, no. 3, pp. 167-172, 2017.
[63] P. K. Bajpai, I. Singh, and J. J. W. Madaan, “Tribological behavior of natural fiber reinforced PLA composites,” vol. 297, no. 1-2, pp. 829-840, 2013.
[64] S.-C. Shi, and T.-F. Huang, “Effects of temperature and humidity on self-healing behaviour of biopolymer hydroxylpropyl methylcellulose for ecotribology,” Surface and Coatings Technology, vol. 350, pp. 997-1002, 2018.
[65] S.-C. Shi, and J.-Y. Wu, “Enhancement Mechanism for Carbohydrate Polymer Green Lubricant,” Polymers and Polymer Composites, vol. 26, no. 1, pp. 85-90, 2018.
[66] S.-C. Shi, J.-Y. Wu, and Y.-Q. Peng, “Transfer layer formation in MoS2/hydroxypropyl methylcellulose composite,” Wear, vol. 408, pp. 208-213, 2018.
[67] S. Prolongo, M. Gude, G. Del Rosario et al., “Surface pretreatments for composite joints: study of surface profile by SEM image analysis,” vol. 24, no. 11-12, pp. 1855-1867, 2010.
[68] S.-C. Shi, and T.-W. Chang, “FTIR study of the surface properties and tribological behaviors of plasma-modified UHMWPE and zirconia,” Optical and Quantum Electronics, vol. 50, no. 12, pp. 440, 2018.
[69] S. Prolongo, G. Rosario, A. J. J. o. a. s. Ureña et al., “Study of the effect of substrate roughness on adhesive joints by SEM image analysis,” vol. 20, no. 5, pp. 457-470, 2006.
[70] D. Daranarong, P. Techaikool, W. Intatue et al., “Effect of surface modification of poly (l-lactide-co-ε-caprolactone) membranes by low-pressure plasma on support cell biocompatibility,” vol. 306, pp. 328-335, 2016.
[71] D. J. J. o. M. S. Tzetzis, “The role of surface morphology on the strength and failure mode of polymer fibre reinforced single lap joints,” vol. 43, no. 12, pp. 4271-4281, 2008.
[72] H. Luo, G. Xiong, Q. Li et al., “Preparation and properties of a novel porous poly (lactic acid) composite reinforced with bacterial cellulose nanowhiskers,” vol. 15, no. 12, pp. 2591-2596, 2014.
[73] F. Matthews, P. Kilty, and E. Godwin, “A review of the strength of joints in fibre-reinforced plastics. Part 2. Adhesively bonded joints,” Composites, vol. 13, no. 1, pp. 29-37, 1982.