簡易檢索 / 詳目顯示

研究生: 謝家豐
Hsieh, Chia-Feng
論文名稱: 奈米纖維素強化聚乳酸複合材料的應用研究
Applications of nanocrystalline cellulose reinforced polylactic acid (PLA) composites
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 110
中文關鍵詞: 聚乳酸奈米纖維素雙螺桿混煉射出成型磨耗性質單面膠黏拉伸試驗
外文關鍵詞: Polylactic acid, nanocrystalline cellulose, Injection molding, wear properties, single lap shear test
相關次數: 點閱:218下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 天然纖維增強聚合物複合材料的應用範圍在各個工程領域迅速發展。本研究主要探討奈米纖維素(nanocrystalline cellulose, CNC)的添加對聚乳酸(polylactic acid, PLA)複合材料的機械性質、熱穩定性、磨耗特性和親疏水特性以及應用於工程塑膠的可行性。
    研究顯示CNC在沒有經過改質的狀態下直接與PLA複合的強化效果並不理想,即便設計螺桿組態來改善分散,最終結果也相當有限。而結晶度因為過度聚集抑制了異質成核的發生;拉伸結果在含量1 wt.%CNC時得到最優越的韌性斷裂,隨著含量增加,其中的楊氏係數與斷裂強度分別上升6.2%和2.1%。而CNC有助於增加抗磨耗性,PLA/CNC在磨耗時受CNC的保護,因此磨耗行為有所提升。膠黏部分透過電漿改質,使表面同時產生化學與物理作用,進而提升20.9%的最大膠黏抗剪切強度。

    關鍵字:聚乳酸、奈米纖維素、雙螺桿混煉、射出成型、磨耗性質、

    Nanocrystalline cellulose (CNC) is a good candidate of reinforcement for composites, The application of nanocrystalline cellulose as fabric or structural reinforcements widely introduced in the a variety of industries. This studies the properties of CNC by using twin screw extrusion to combine PLA and 1, 3, and 5wt.% CNC and produces ASTM test specimens through inject molding. The composite material obtained through inject molding sees an increase in the strength compared to pure PLA. However, from the experiments, it was discovered that CNC aggregates within PLA and as a result has a limited enhancement to the strength of PLA. In addition, an improvement in the wear resistance of PLA/CNC composite material was observed. It was also observed that adding 5wt.% CNC to the composite material can reduce its friction coefficient. In addition, the adhesive shear strength of the composite was also improved by atmospheric plasma treatment when nozzles were used at a distance of 12mm. Surface roughness was reduced by 62%, thereby increasing the shear strength of the composite.

    key words : polylactic acid, nanocrystalline cellulose, injection molding, wear test, single lap shear test

    總目錄 口試合格證明 i 摘要 ii 誌謝 ix 總目錄 x 表目錄 xiv 圖目錄 xvi 第1章 緒論 1 1.1 前言 1 1.2 研究動機 5 第2章 文獻回顧 8 2.1 高分子特性 8 2.1.1 生物降解高分子簡介 8 2.1.2 聚乳酸簡介Polylactic acid 9 2.1.3 奈米纖維素 (Cellulose nanocrystalline ) 10 2.1.3.1 奈米纖維素製備簡介 11 2.1.4 高分子的機械性質 12 2.2 高分子加工簡介 13 2.2.1 高分子流變特性 13 2.2.2 黏度與溫度關係 16 2.2.3 雙螺桿混煉(Twin screw extrusion) 17 2.2.3.1 螺桿組態(Screw configuration) 18 2.2.3.2 同向咬合(co-rotating)與異向咬合(counter rotating): 18 2.2.3.3 同向咬合與異相咬合的混煉效果 19 2.2.3.4 螺桿組態設計 19 2.2.4 射出成型(Injection molding) 20 2.2.4.1 射出成形過程 21 2.3 聚乳酸複合奈米纖維素 23 2.4 膠黏應用及設計 25 2.4.1 黏著定義與黏著劑種類 25 2.4.2 濕潤性與接觸角 26 2.4.2.1 潤濕性(Wettability) 26 2.4.2.2 接觸角與Young’s方程 27 2.4.3 表面粗糙度與影響接觸角的因素 28 2.4.4 影響表面形貌參數 29 2.4.4.1 振幅參數(Amplitude parameters): 29 2.4.4.1.1 中心線平均粗糙度(Roughness average,Ra) 29 2.4.4.1.2 最大波峰高度(Maximum peak height,Rp) 30 2.4.4.1.3 粗糙度幾何平均值(Root-mean-square【RMS】roughness, Rq) 31 2.4.4.2 綜合參數(Hybrid parameters): 31 2.4.4.2.1 振幅分佈之偏斜度(Skewness,Rsk) 31 2.4.4.2.2 振幅分佈之陡峭度(Kurtosis,Rku) 32 2.4.5 低溫電漿處理提升表面自由能 33 2.4.6 單面黏合剪切 36 2.5 單面膠黏抗剪切強度與低溫大氣電漿 37 第3章 實驗規劃 40 3.1 實驗流程 40 3.2 實驗方法 41 3.2.1 實驗材料 41 3.2.2 成型加工設備簡介 46 3.2.3 熱分析 51 3.2.4 機械性質分析 52 3.2.5 迴轉式-磨耗試驗機(Pin-on-disk) 54 3.2.6 低溫大氣電漿 55 3.2.7 表面形貌分析 57 3.2.8 表面親疏水特性與表面自由能分析 60 第4章 實驗結果與討論 61 4.1 熱分析 61 4.1.1 熱重分析(TGA) 61 4.1.2 差示熱掃描分析(DSC) 62 4.2 抗拉強度分析 64 4.2.1 拉伸斷裂點 64 4.2.2 純PLA與PLA/CNC的機械性質 64 4.3 拉伸斷裂面形貌分析 70 4.4 磨耗性質分析 72 4.4.1 不同距離下的耐磨性分析 72 4.5 低溫大氣電漿提升表面親水性分析 77 4.5.1 不同高度的電漿處理影響表面粗糙度 78 4.5.2 固定高度的電漿處理之表面粗糙度 84 4.5.3 不同含量的CNC影響PLA的表面自由能 88 4.6 搭接剪切強度分析 95 4.6.1 電漿改質影響膠黏剪切拉伸強度 95 4.6.2 膠黏斷裂面的失效模式 99 第5章 結論 102 5.1 總結 102 參考文獻 104 表目錄 表 1 1 Property chart for basic polymers for gearing 4 表 2 1 射出成型過程(上) 21 表 2 2 射出成型過程(下) 22 表 2 3 拉伸結果 [26] 23 表 2 4 溶液表面張力表[39] 35 表 3 1 PLA原始機械性質總表 41 表 3 2 CelluForce NCCTM 產品之性質 42 表 3 3 3MTM Scotch-WeldTM Epoxy adhesives 43 表 3 4 電木布基(棉布)-C 44 表 3 5尼龍(MC901-齒輪級) 45 表 3 6射出加工條件 48 表 3 7表面粗糙度值對照表[50] 59 表 4 1 TGA分析結果 62 表 4 2純PLA與PLA/CNC複合材料的DSC數據總結 63 表 4 3純PLA與PLA/CNC的最大抗拉強度(σy)、最大斷裂強度(σB)、楊氏模數(E)與伸長率(%) 66 表 4 4 電漿處理前的表面粗糙度 80 表 4 5不同高度下的電漿處理之表面粗糙度 81 表 4 6 接觸角量測電漿處裡後的表面親水衰退過程 83 表 4 7表面未經過電漿處理的表面粗糙度數據總表 85 表 4 8表面經過電漿處理的表面粗糙度數據總表 85 表 4 9 純-PLA表面未經過電漿改質的接觸角與表面自由能 91 表 4 10 PLA/1 wt.%CNC表面未經過電漿改質的表面自由能 91 表 4 11 PLA/3 wt.%CNC表面未經過電漿改質的表面自由能 92 表 4 12 PLA/5 wt.%CNC表面未經過電漿改質的表面自由能 92 表 4 13 純PLA表面經大氣電漿改質後的接觸角與表面自由能 93 表 4 14 PLA/1 wt.%CNC表面經大氣電漿改質後的表面自由能 93 表 4 15 PLA/3 wt.%CNC表面經大氣電漿改質後的表面自由能 94 表 4 16 PLA/5 wt.%CNC表面經大氣電漿改質後的表面自由能 94 表 4 17 PLA/CNC材料的膠黏抗剪強度與表面自由能比較 98   圖目錄 圖 1.1 PLA應用的演進 2 圖 1.2 工程塑膠分類[2] 3 圖 1.3 常見的塑膠齒輪 5 圖 1.4 實驗魚骨圖 7 圖 2.1 聚乳酸合成過程 [6] 9 圖 2.2右旋乳酸(D-lactic acid)與左旋乳酸(L-lactic acid) [7] 10 圖 2.3 (a)單纖維素鏈重複單元的示意圖(b)纖維素纖維結晶和無定形的配置(c)酸水解後的奈米纖維素溶解了無序段[11] 11 圖 2.4 應力-應變關係圖 13 圖 2.5流體元素 14 圖 2.6 流動曲線圖 15 圖 2.7黏度與溫度關係圖 16 圖 2.8單螺桿混煉示意圖 18 圖 2.9 雙螺桿咬合方式 19 圖 2.10本次研究使用的雙螺桿組態 20 圖 2.11 壓出螺桿與射出螺桿比較 21 圖 2.12 雙螺桿組態與混煉擠出機 [26] 24 圖 2.13 不同方法製備薄膜(a)溶液澆鑄法(b)旋轉塗佈法和薄膜的SEM微影圖(50μm ×500)(c)溶液澆鑄法(d)旋轉塗佈法 [27] 25 圖 2.14界面膠黏示意圖 26 圖 2.15 黏著劑種類 26 圖 2.16 固、液、體三項界面示意圖 27 圖 2.17 (a) Wenzel與(b) Cassic-Baxter固液界面示意圖 29 圖 2.18中心線平均粗糙度 [33] 30 圖 2.19 最大波峰高度 [33] 30 圖 2.20粗糙度幾何平均值 [33] 31 圖 2.21 振幅分布之偏斜度 [33] 32 圖 2.22振幅分布陡峭度 [33] 33 圖 2.23 單面搭接膠黏剪切應力分佈 [41] 36 圖 2.24在1英寸寬和1/4英寸厚的鋼帶上進行試驗 [40] 37 圖 2.25 三種典型的膠黏失效模式 [43] 38 圖 2.26 PLA表面經過大氣電漿在不同噴嘴高度與進給速率下的剪切測試之膠黏斷裂面 [44] 39 圖 3.1 實驗流程圖 40 圖 3.2 同向雙螺桿混煉機 46 圖 3.3台中精機 Vs-50k射出成形機 [45] 48 圖 3.4 射出成形模具(a)ASTM標準試片(b)模穴為120*90*2 mm模具 49 圖 3.5射出成型成品 49 圖 3.6 除濕乾燥機 50 圖 3.7 QC-H51A2拉伸試驗機 52 圖 3.8標準試片(a)ASTM D638 Type I [47]與(b)ASTM D5868 [48] 53 圖 3.9 Epsilon延伸計 53 圖 3.10 正齒輪及螺旋齒輪受力點 55 圖 3.11磨耗試驗機 55 圖 3.12 噴射式電漿噴頭設計 56 圖 3.13掃描S型路徑 57 圖 4.1純PLA與PLA/ 1、3、5wt.%CNC的TGA分析曲線 61 圖 4.2 純PLA與PLA/1、3、5wt% CNC的DSC熱分析曲線 63 圖 4.3 拉伸試驗試片斷裂結果 64 圖 4.4 奈米纖維素與噴霧式乾燥法 [14] 66 圖 4.5 Pure PLA之應力-應變 67 圖 4.6 PLA/1 wt% CNC之應力-應變 67 圖 4.7 PLA /3 wt.%CNC之應力-應變 68 圖 4.8 PLA/ 5 wt.%CNC之應力-應變 68 圖 4.9 市售的工程材料與純PLA和PLA/CNC的拉伸強度比較 69 圖 4.10拉伸斷裂面;500μm,100倍(a)純PLA(b)PLA/1 wt.%CNC(d)PLA/3 wt.%CNC(c)PLA/5 wt.%CNC 71 圖 4.11 固定荷重1.5 N和轉速239 rpm下,電木、尼龍和PLA/CNC系列在100、200、300 m的磨耗體積(μm3)與摩擦係數(μ)變化 74 圖 4.12電木、尼龍和PLA/CNC系列的磨耗率 75 圖 4.13固定荷重1.5 N和239 rpm下,材料磨耗所對應之消散能 75 圖 4.14 電木、尼龍和PLA/CNC系列在100、200、300 m下的磨耗痕跡(上) 76 圖 4.15電木、尼龍和PLA/CNC系列在100、200、300 m下的磨耗痕跡(下) 77 圖 4.16電漿處理後的表面形貌(A)(B)(C)處理高度為6 mm(D)(E)(F) 處理高度為12 mm(G)(H)(I) 處理高度為18 mm 80 圖 4.17 電漿處理後的表面形貌(A’)(B’)(C’) 處理高度為6 mm(D’)(E’)(F’) 處理高度為12 mm(G’)(H’)(I’) 處理高度為18 mm 81 圖 4.18 電漿噴頭距離試片6 mm的接觸角變化 82 圖 4.19電漿噴頭距離試片12 mm的接觸角變化 82 圖 4.20電漿噴頭距離試片18 mm的接觸角變化 83 圖 4.21 未過電漿處理的2D表面粗糙度輪廓和表面未經過噴式電漿處理的表面形貌3D輪廓 86 圖 4.22經過電漿處理後的2D表面粗糙度輪廓和表面經過噴射式電漿處理的表面形貌3D輪廓 87 圖 4.23 未經過電漿改質前各含量的接觸角 89 圖 4.24 經過電漿改質後各含量的接觸角 89 圖 4.25 未經過電漿處理的表面自由能 90 圖 4.26 經過電漿處理的表面自由能 90 圖 4.27電漿處理前單面搭接膠黏拉伸的剪切負荷與位移曲線圖 97 圖 4.28電漿處理後單面搭接膠黏拉伸的剪切負荷與位移曲線 97 圖 4.29電漿表面改質前後的搭接剪切應力變化比較 98 圖 4.30 黏著劑厚度0.5 mm的抗剪切斷裂面(a)未經過電漿處理(b)經過電漿處理 100 圖 4.31 透過黏著劑將剪切力從一個構件傳遞到另一個構件[40] 101 圖 4.32 (左)單面搭接剪切和剝離應力的典型變化[73],(右)等高線圖顯示(a)軸向應力(b)剪切應力和(c)單面搭接接頭的剝離應力[71] 101

    [1] C. M. Agrawal, R. B. J. J. o. B. M. R. A. O. J. o. T. S. f. B. Ray, The Japanese Society for Biomaterials,, T. A. S. f. Biomaterials et al., “Biodegradable polymeric scaffolds for musculoskeletal tissue engineering,” vol. 55, no. 2, pp. 141-150, 2001.
    [2] 威畯軸承展業有限公司. "塑膠軸承," 03/20, 2019; http://www.wigogo.com.tw/?f=Plastic-Physical-Characteristics.
    [3] W. C. Orthwein, Clutches and brakes: Dekker New York, 1986.
    [4] 楊斌, PLA聚乳酸環保塑膠 = Poly lactic acid plastic of environmental protection, 初版 ed., 臺北市: 五南, 2010.
    [5] S. Domenek, and V. Ducruet, Characteristics and Applications of PLA: John Wiley & Sons, Inc, 2016.
    [6] L.-T. Lim, R. Auras, and M. J. P. i. p. s. Rubino, “Processing technologies for poly (lactic acid),” vol. 33, no. 8, pp. 820-852, 2008.
    [7] J. Ahmed, and S. K. Varshney, “Polylactides—chemistry, properties and green packaging technology: a review,” International journal of food properties, vol. 14, no. 1, pp. 37-58, 2011.
    [8] S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review,” Adv Drug Deliv Rev, vol. 107, pp. 367-392, Dec 15, 2016.
    [9] A. Chakrabarty, and Y. J. P. Teramoto, “Recent Advances in Nanocellulose Composites with Polymers: A Guide for Choosing Partners and How to Incorporate Them,” vol. 10, no. 5, pp. 517, 2018.
    [10] Y. Habibi, L. A. Lucia, and O. J. J. C. r. Rojas, “Cellulose nanocrystals: chemistry, self-assembly, and applications,” vol. 110, no. 6, pp. 3479-3500, 2010.
    [11] R. J. Moon, A. Martini, J. Nairn et al., “Cellulose nanomaterials review: structure, properties and nanocomposites,” vol. 40, no. 7, pp. 3941-3994, 2011.
    [12] T. Shen, and S. J. B. j. Gnanakaran, “The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks,” vol. 96, no. 8, pp. 3032-3040, 2009.
    [13] S. Jiang, G. Duan, J. Schöbel et al., “Short electrospun polymeric nanofibers reinforced polyimide nanocomposites,” vol. 88, pp. 57-61, 2013.
    [14] H.-M. Ng, L. T. Sin, T.-T. Tee et al., “Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers,” vol. 75, pp. 176-200, 2015.
    [15] Y. Peng, Y. Han, D. J. J. W. Gardner et al., “Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution,” vol. 44, no. 4, pp. 448-461, 2012.
    [16] 胡德, 高分子物理與機械性質, 臺北市: 渤海堂.
    [17] 顔清連, 實用流體力學 = Fluid mechanics, 初版 ed., 臺北市: 五南, 2015.
    [18] R. S. Porter, and J. F. Johnson, "Temperature dependence of polymer viscosity. The influence of shear rate and stress." pp. 365-371.
    [19] F. M. White, and I. Corfield, Viscous fluid flow: McGraw-Hill New York, 2006.
    [20] 章宗穰, 運動中的分子 : 熱力學與反應動力學, 初版 ed., 臺北縣: 世潮, 2004.
    [21] 尼爾森, and 林健樑, 流變學, 臺南巿: 復文.
    [22] M. M. Cross, Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems, 1965.
    [23] 劉士榮, 高分子加工, 初版 ed., 臺中市: 滄海書局.
    [24] R. T. Fenner, Developments in the analysis of steady screw extrusion of polymers: Elsevier, 1977.
    [25] Y. Wang, and J. L. White, Non-Newtonian flow modelling in the screw regions of an intermeshing corotating twin screw extruder: Elsevier, 1989.
    [26] D. Bondeson, K. J. C. P. A. A. S. Oksman, and Manufacturing, “Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol,” vol. 38, no. 12, pp. 2486-2492, 2007.
    [27] J. Shojaeiarani, D. S. Bajwa, and N. M. J. C. p. Stark, “Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites,” vol. 190, pp. 139-147, 2018.
    [28] A. J. L. Marmur, “Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?,” vol. 19, no. 20, pp. 8343-8348, 2003.
    [29] G. Whyman, E. Bormashenko, and T. J. C. P. L. Stein, “The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon,” vol. 450, no. 4-6, pp. 355-359, 2008.
    [30] D. Bonn, and D. J. R. o. P. i. P. Ross, “Wetting transitions,” vol. 64, no. 9, pp. 1085, 2001.
    [31] P.-G. J. R. o. m. p. De Gennes, “Wetting: statics and dynamics,” vol. 57, no. 3, pp. 827, 1985.
    [32] R. N. J. I. Wenzel, and E. Chemistry, “Resistance of solid surfaces to wetting by water,” vol. 28, no. 8, pp. 988-994, 1936.
    [33] E. Gadelmawla, M. Koura, T. Maksoud et al., “Roughness parameters,” vol. 123, no. 1, pp. 133-145, 2002.
    [34] 張庭維, 經低溫大氣電漿表面改質之氧化鋯於膠原蛋白與羥丙基甲基纖維素複合溶液中磨潤性質之研究 = Tribology properties of low-temperature atmospheric pressure plasma modified Zirconia in collagen/HPMC solution.
    [35] M. Noeske, J. Degenhardt, S. Strudthoff et al., “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,” International Journal of Adhesion and Adhesives, vol. 24, no. 2, pp. 171-177, Apr, 2004.
    [36] F. M. J. T. J. o. P. C. Fowkes, “Additivity of intermolecular forces at interfaces. i. determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids1,” vol. 67, no. 12, pp. 2538-2541, 1963.
    [37] F. M. J. I. Fowkes, and E. Chemistry, “Attractive forces at interfaces,” vol. 56, no. 12, pp. 40-52, 1964.
    [38] R. J. J. J. o. a. s. Good, and technology, “Contact angle, wetting, and adhesion: a critical review,” vol. 6, no. 12, pp. 1269-1302, 1992.
    [39] D. K. Owens, and R. J. J. o. a. p. s. Wendt, “Estimation of the surface free energy of polymers,” vol. 13, no. 8, pp. 1741-1747, 1969.
    [40] N. J. A. e. De Bruyne, and a. technology, “The strength of glued joints,” vol. 16, no. 4, pp. 115-118, 1944.
    [41] R. G. Budynas, Shigley's mechanical engineering design, 8th ed. ed., Boston :: McGraw-Hill, 2008.
    [42] D. Bondeson, and K. J. C. I. Oksman, “Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites,” vol. 14, no. 7-9, pp. 617-630, 2007.
    [43] N. Kagalkar, S. Srinivas, and B. J. M. T. P. Dhananjaya, “Determination of Shear Strength and Failure Type of the Sealant using Lap Shear Test,” vol. 5, no. 1, pp. 2752-2758, 2018.
    [44] A. Jordá‐Vilaplana, L. Sánchez‐Nácher, V. Fombuena et al., “Improvement of mechanical properties of polylactic acid adhesion joints with bio‐based adhesives by using air atmospheric plasma treatment,” vol. 132, no. 32, 2015.
    [45] 台中精機集團. "Injection Machine," 03/20, 2019; https://www.victortaichung.com/injection-machines/tw/vs-50-e.htm.
    [46] L. Wei, U. P. Agarwal, L. Matuana et al., “Performance of high lignin content cellulose nanocrystals in poly (lactic acid),” vol. 135, pp. 305-313, 2018.
    [47] A. Internation, "Standard Test Method for Tensile Properties of Plastics," D638-14, 2014.
    [48] A. International, "Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding," 2014.
    [49] M. Noeske, J. Degenhardt, S. Strudthoff et al., “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,” vol. 24, no. 2, pp. 171-177, 2004.
    [50] 機械製圖, 臺北巿 :: 新學識文教.
    [51] J. Izdebska-Podsiadły, and E. J. V. Dörsam, “Effects of argon low temperature plasma on PLA film surface and aging behaviors,” vol. 145, pp. 278-284, 2017.
    [52] W. Yang, E. Fortunati, F. Dominici et al., “Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging,” vol. 79, pp. 1-12, 2016.
    [53] C. Zhang, M. R. Salick, T. M. Cordie et al., “Incorporation of poly (ethylene glycol) grafted cellulose nanocrystals in poly (lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering,” vol. 49, pp. 463-471, 2015.
    [54] M. Jonoobi, J. Harun, A. P. Mathew et al., “Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion,” vol. 70, no. 12, pp. 1742-1747, 2010.
    [55] E. Fortunati, F. Luzi, D. Puglia et al., “Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves,” vol. 56, pp. 77-91, 2014.
    [56] P. Zhang, D. Gao, P. P. Zou et al., “Preparation and thermomechanical properties of nanocrystalline cellulose reinforced poly(lactic acid) nanocomposites,” Journal of Applied Polymer Science, vol. 134, no. 14, pp. 9, Apr, 2017.
    [57] N. Herrera, A. P. Mathew, K. J. C. S. Oksman et al., “Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties,” vol. 106, pp. 149-155, 2015.
    [58] L. Quiles-Carrillo, S. Duart, N. Montanes et al., “Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil,” vol. 140, pp. 54-63, 2018.
    [59] J. K. Muiruri, S. Liu, W. S. Teo et al., “Highly biodegradable and tough polylactic acid–cellulose nanocrystal composite,” ACS Sustainable Chemistry & Engineering, vol. 5, no. 5, pp. 3929-3937, 2017.
    [60] B. Li, F.-X. Dong, X.-L. Wang et al., “Organically modified rectorite toughened poly (lactic acid): Nanostructures, crystallization and mechanical properties,” vol. 45, no. 11, pp. 2996-3003, 2009.
    [61] P. K. Singh, and A. K. J. T. I. Singh, “An investigation on the thermal and wear behavior of polymer based spur gears,” vol. 118, pp. 264-272, 2018.
    [62] S.-C. Shi, and J.-Y. Wu, “MoS2 Additives for Enhancing Tribological Performance of Hydroxypropyl Methylcellulose Biopolymer,” Smart Science, vol. 5, no. 3, pp. 167-172, 2017.
    [63] P. K. Bajpai, I. Singh, and J. J. W. Madaan, “Tribological behavior of natural fiber reinforced PLA composites,” vol. 297, no. 1-2, pp. 829-840, 2013.
    [64] S.-C. Shi, and T.-F. Huang, “Effects of temperature and humidity on self-healing behaviour of biopolymer hydroxylpropyl methylcellulose for ecotribology,” Surface and Coatings Technology, vol. 350, pp. 997-1002, 2018.
    [65] S.-C. Shi, and J.-Y. Wu, “Enhancement Mechanism for Carbohydrate Polymer Green Lubricant,” Polymers and Polymer Composites, vol. 26, no. 1, pp. 85-90, 2018.
    [66] S.-C. Shi, J.-Y. Wu, and Y.-Q. Peng, “Transfer layer formation in MoS2/hydroxypropyl methylcellulose composite,” Wear, vol. 408, pp. 208-213, 2018.
    [67] S. Prolongo, M. Gude, G. Del Rosario et al., “Surface pretreatments for composite joints: study of surface profile by SEM image analysis,” vol. 24, no. 11-12, pp. 1855-1867, 2010.
    [68] S.-C. Shi, and T.-W. Chang, “FTIR study of the surface properties and tribological behaviors of plasma-modified UHMWPE and zirconia,” Optical and Quantum Electronics, vol. 50, no. 12, pp. 440, 2018.
    [69] S. Prolongo, G. Rosario, A. J. J. o. a. s. Ureña et al., “Study of the effect of substrate roughness on adhesive joints by SEM image analysis,” vol. 20, no. 5, pp. 457-470, 2006.
    [70] D. Daranarong, P. Techaikool, W. Intatue et al., “Effect of surface modification of poly (l-lactide-co-ε-caprolactone) membranes by low-pressure plasma on support cell biocompatibility,” vol. 306, pp. 328-335, 2016.
    [71] D. J. J. o. M. S. Tzetzis, “The role of surface morphology on the strength and failure mode of polymer fibre reinforced single lap joints,” vol. 43, no. 12, pp. 4271-4281, 2008.
    [72] H. Luo, G. Xiong, Q. Li et al., “Preparation and properties of a novel porous poly (lactic acid) composite reinforced with bacterial cellulose nanowhiskers,” vol. 15, no. 12, pp. 2591-2596, 2014.
    [73] F. Matthews, P. Kilty, and E. Godwin, “A review of the strength of joints in fibre-reinforced plastics. Part 2. Adhesively bonded joints,” Composites, vol. 13, no. 1, pp. 29-37, 1982.

    下載圖示 校內:2024-03-22公開
    校外:2024-03-22公開
    QR CODE