| 研究生: |
李原瑋 Li, Yuan-Wei |
|---|---|
| 論文名稱: |
聚焦離子束對奈米接觸電阻量測影響之研究 Influence of focus ion beam on nano contact resistance measuremen |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 掃描電阻顯微鏡 、聚焦離子束 、二次離子質譜儀 、擴展電阻 、離子植入輪廓 |
| 外文關鍵詞: | SSRM, FIB, SIMS, spreading resistance, doping profile |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著半導體元件 (MOSFET) 微縮,半導體製程中的離子植入的擴散行為需要嚴格控制,一般矽電晶體的摻雜濃度範圍大約在1015-1021 atom/cm3,植入深度是奈米等級,大部分成分分析儀器受限於偵測極限與空間解析能力都無法勝任,而掃描式電阻顯微鏡(SSRM)具有非常大的分析潛力。
電晶體元件特定位置的定點分析,需要仰賴FIB的試片製作,但FIB製作試片的同時,會產生離子損傷層,造成Si非晶化與Ga的摻雜,與傳統的物理研磨上只有native oxide的表面型態有所不同,會造成SSRM串聯電阻量測影響。而擴展電阻是點電流電位的推導,當探針與試片厚度的比值越小時,會遇到擴展電阻邊界條件的影響。
本篇論文利用實驗去探討奈米接觸的電阻量測,並建立SSRM量測試片利用FIB製備的可行性。本次實驗wafer磊晶委託台灣半導體研究中心(TSRI)製作,聚焦離子束使用成功大學奈米中心,SSRM 使用中央大學Hitachi掃描探針式顯微鏡。
Under modern technology, the structure of semiconductor devices is small, and the doping process is complicated. It is difficult for traditional analysis tools to obtain a clear doping profile. Scanning spreading resistance microscopy (SSRM) with a two-dimensional spatial distribution of nano-scale spatial resolution and a wide detection range of 1015 to 1021 atoms/cm3 is a powerful tool and potential for implant analysis.
Through the nano-contact between the probe and the sample surface, SSRM can measure electrical resistance. The site-specific cross-sectional analysis requires the use of Ga + FIB (focused ion beam) to prepare SSRM samples. FIB milling will produce amorphous and Ga implanted layers, which will affect SSRM measurements.
It can be seen from the results that the scanning and polishing of the diamond probe cannot remove the FIB 5kV damaged layer, resulting in the resistance of the SSRM series being higher than that of natural oxide. As for samples with different thicknesses (50nm-2000nm), they are equivalent to different extended resistance bonding conditions with similar doping profiles. In the experiment, it is difficult to obtain a usable SSRM signal by applying a low voltage.
In this study, the method of preparing SSRM samples with FIB was demonstrated, and this method used SIMS quantitative boron in-situ doping staircase sample to verify SSRM results.
[1] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. H. Lo, G. A. SaiHalasz, R. G. Viswanathan, H. J. C. Wann, S. J. Wind, H. S. Wong, “CMOS scaling into the nanometer regime” , Proc. IEEE, vol. 85, no. 4, pp 486-504, Apr 1997.
[2] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H. S. P. Wong, “Device scaling limits of Si MOSFETs and their application dependencies”, Proc. IEEE, vol. 89, no. 3, pp 259-288 , Mar 2001,.
[3] L. Zhang, M. Koike, M. Ono, S. Itai, K. Matsuzawa, S. Ono, W. Saito, M. Yamaguchi, Y. Hayase, K. Hara, “Comprehensive 2D-carrier profiling of low-doping region by high-sensitivity scanning spreading resistance microscopy (SSRM) for power device applications” , Elsevier Microelectronics Reliability, pp 1159-1163, 2015.
[4] Doering S, Wachowiak A, Winkler U, Richter M, Goehler J, Roetz H, et al. “Scanning spreading resistance microscopy analysis of locally blocked implant sites”. Microelectron Eng, pp 77–81,2014.
[5] W. Vandervorst, M. Meuris, “Method for resistance measurements on a semiconductor element with controlled probe pressure”, US-5369372, 1994.
[6] P. De Wolf, “Two-dimensional carrier profiling of semiconductor structures with nanometer resolution”. Ph.D. thesis ,KU Leuven, Leuven, Belgium 1998.
[7] I Miccoli, F Edler, H Pfnr, and C Tegenkamp. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Journal of Physics: Condensed Matter, 27(22):223201, 2015
[8] R.G. Mazur and D.H. Dickey, “A Spreading Resistance Technique for Resistivity Measurements in Si”. J. Electrochem Soc, pp 255–259 1966.
[9] M.W. Denhoff, “An accurate calculation of spreading resistance,” Journal of Physics D: Applied Physics 39, P17-61, 2006.
[10] N.N. Polyakov, V.L. Kon'kov, “Spreading resistance of a flat circular contact,” Russian Physics Journal 13, P1203-1207, 1970.
[11] P Eyben, W Vandervorst, D Alvarez, M Xu, M. Fourchier “Probing Semiconductor Technology and Devices with Scanning Spreading Resistance Microscopy”, Springer, 2007.
[12] 施敏, “半導體元件物理學”,交大出版社,2008
[13] Jin Huang, Markus Loeffler , Uwe Muehle , Wolfhard Moeller , Hans Mulders , Laurens Kwakman and Ehrenfried Zschech, “A Study of Gallium FIB induced Silicon Amorphization using TEM, APT and BCA Simulation, ” Microsc. Microanal. 21 (Suppl 3), pp918, 2015.
[14] J. M. De Teresa, R. Cordoba, A. Fernandez-Pacheco, O. Montero, P. Strichovanec,3 and M. R. Ibarra, “Origin of the difference in the resistivity of as-grown focused-ion- and focused-electron-beam-induced Pt nanodeposits”. Journal of Nanomaterials 2009, 2009.
校內:2025-08-01公開