簡易檢索 / 詳目顯示

研究生: 武冠群
Wu, Guan-Cyun
論文名稱: 以標準化地下水位指數法評估屏東平原地下水水位枯旱特徵之研究
Characteristics of Groundwater Level Response to Drought on Pingtung Plain Using Standardized Groundwater Index
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 116
中文關鍵詞: 標準化地下水位指數法(SGI)Mann-Kendall趨勢檢定法屏東平原日水位資料枯旱強度門檻枯旱度預測
外文關鍵詞: Pingtung Plain, Standardized Groundwater Index, Mann-Kendall Test, Daily Groundwater Level Records, groundwater level recession models, Groundwater Management
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於全球氣候變遷的影響,造成許多地區的降雨型態發生改變,從而影響當地的經濟與社會活動。台灣同樣面臨嚴峻的氣候變遷帶來的水資源匱乏問題,降雨集中且強度變化大,使得集水能力十分有限以及災害頻傳,因此需要良好的水資源規劃因應之。本研究選擇台灣南部的屏東平原作為研究區域,嘗試規劃出一套有效的地下水枯旱度標準,分析研究區域內長期且連續的地下水位觀測資料並探討其相對枯旱的期間與強度,目的是了解本區地下水枯旱狀態的時空分布特性與相關性,可供未來地下水資源整體規劃之參考。
    首先,本研究使用Mann-Kendall檢定法評估研究期間內各測站地下水位的變化趨勢,以了解研究區域內長期水位波動的情形。其次,應用標準化地下水位指數法(SGI),將選定之測站的連續180與360日地下水位累積值轉換成標準化的SGI指標:SGI180與SGI360。接著使用各測站的SGI180與SGI360之指標歷線,觀測半年尺度與一年尺度下之地下水水位相對枯旱強度變化的情形。本研究利用SGI指標的出現機率訂定枯旱的嚴重程度,根據研究期間內SGI指標的資料累積分布函數,篩選出50%、30%與10%出現機率對應的SGI指標值分別作為界定枯旱強度的門檻值。最後,本研究發展出一套地下水枯旱度預測模式,使用各測站歷年地下水自然消退期間的水位資料擬合消退水位預測式,將現有水位帶入預測式計算產生水位消退線後,可計算SGI指標以評估未來地下水位狀態的枯旱嚴重程度。
    本研究使用Mann-Kendall趨勢檢定法評估屏東平原地下水觀測站的水位變動趨勢結果顯示:屏東平原各流域上游多數測站的水位變化特性呈現下降趨勢,而下游測站水位變化則呈現上升趨勢或無顯著趨勢,接著應用SGI180與SGI360評估地下水枯旱狀態,相對枯旱期間的時空分布調查結果顯示:SGI180在測站每年入冬後都可以偵測到輕微的枯旱訊號,而SGI360則善於偵測橫跨一個豐枯水期的枯旱訊號;SGI180與SGI360在屏東平原各流域於連續枯水年時,上游與下游偵測到相反的枯旱狀態,相對枯旱變動情形與Mann-Kendall檢定法評估的地下水水位變化趨勢大致符合。
    研究成果表明,在屏東平原的第一含水層之地下水枯旱狀態受到區域內的降雨時間分布與水文地質型態的影響。另外,本研究依照屏東平原各流域上游與下游枯旱分佈的不同各篩選出該流域之代表測站,建立地下水枯旱度預測模式,投入歷年水位消退期間檢驗枯旱度預測效果。在關福、老埤與餉潭站預測的枯旱度變化與實際狀態相近,但高樹站與溪埔站分別受到降雨和河川流量的影響,特定水位範圍內的消退變化不同,需要探討分組模式下的消退變化特徵以修正預測的誤差。

    Taiwan has been confronted with severe water shortage crises in recent years owing to the effects of extreme weather conditions. Changes in precipitation patterns have also led the insufficient groundwater recharge, and frequency increase of drought. Hence, further studies the historical groundwater data can be used to understand the distribution characteristics and correlation of the groundwater drought state in the study area, which can be used as a reference for future groundwater resources planning. In the present study, select Pingtung Plain as study area. Daily groundwater level monitoring records during 2000 and 2017 from 53 groundwater level stations on this area are investigated in order to assess the overall groundwater level response to natural drought phenomena. Firstly, the long-term groundwater level records at each station are analyzed using the Standardized Groundwater Index (SGI) method to detect groundwater drought events at half-year and one-year timescales. The two SGI indicators, SGI180 and SGI360, are time-series data consisting of the cumulative total of daily groundwater levels, with a cumulative period of 180 days and 360 days, respectively. The criteria for groundwater drought intensity ranks associated with the cumulative distribution function estimated by SGI is also presented. Secondly, according to the trend of groundwater level records assessed by the Mann-Kendall test, 53 sites were divided into three categories and planning appropriate groundwater management strategies. Finally, develop groundwater level recession models of prediction that can assess the future drought state of groundwater based on current groundwater level conditions. In conclusion, understanding the interaction between drought and groundwater resources is very helpful for the development and management of water resources, and the results can be used as reference for the government’s overall planning of future groundwater resources.

    目 錄 中英文摘要 I 目 錄 VIII 圖目錄 XI 表目錄 XIV 第一章 前言 1 1.1研究動機 1 1.2文獻回顧 4 1.2.1乾旱定義與相關研究 4 1.2.2地下水乾旱研究 6 1.3研究流程與論文架構 8 第二章 研究區域概述 10 2.1研究區域概述 10 第三章 研究方法與理論模式 14 3.1趨勢檢定法(Mann-Kendall Test) 14 3.2枯旱度評估 16 3.2.1標準化雨量指數法(Standardized Precipitation Index) 16 3.2.2標準化地下水位指數法(Standardized Groundwater Index) 18 3.2.3枯旱度分級 19 3.3枯旱度預測模式 22 3.3.1代表測站篩選 22 3.3.2枯水期間消退片段資料彙整 23 3.3.3消退水位預測式的擬合曲線建立 23 第四章 研究結果與討論 26 4.1地下水測站趨勢分析 26 4.1.1地下水測站水位變化趨勢檢定結果 26 4.2枯旱度評估結果 33 4.2.1研究區域內SGI指標歷線的變化與分佈 33 4.2.2相對枯旱的發生機率分佈特性 39 4.3研究區域代表測站篩選 46 4.3.1研究區域分區 46 4.3.2選定代表測站 51 4.4代表測站水位消退預測模式 56 4.4.1正常水位消退擬合模式 56 4.4.2修正水位消退擬合模式 63 4.5代表測站水位消退模式預測結果 74 4.5.1代表測站預測結果分析 74 第五章 結論與建議 78 5.1結論 78 5.2建議 81 參考文獻 82 附錄一:研究選定測站水位歷線圖、SGI180歷線圖與SGI360歷線圖 87 附錄二:屏東平原地下水測站之地理位置圖 115  

    參考文獻
    AMS, 2004. Statement on meteorological drought, Bull, American Meteorological Society, 85, pp.771-773.
    Amirataee, B., Montaseri, M. and Sanikhani, H., 2016. The analysis of trend variations of reference evapotranspiration via eliminating the significance effect of all autocorrelation coefficients, Theoretical and Applied Climatology, 126, pp.131-139.
    Bloomfield, J.P. and Marchant, B.P., 2013. Analysis of groundwater drought building on the standardised precipitation index approach, Hydrology and Earth System Sciences, 17, pp.4769-4787.
    Calow R., Robins, N., Macdonald, A. and Nicol, A., 1999. Planning for groundwater drought in Africa. In: Proceedings of the International Conference on Integrated Drought Management: Lessons for Sub-Saharan Africa. IHP-V, Technical Documents in Hydrology, 35, pp. 255-270.
    Chang, T.j., Teoh, C.B., Is it realistic to define a 100-year drought for water management? Water Resour. Bull., 26 (5) (1990), pp. 823-829
    Chen H., Guo S., Xu C.Y., and Singh, V.P., 2007. Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin, J Hydrol , 344, 171–184.
    Dai A., 2011. Drought under global warming: a review, Wiley Interdiscip Rev Clim Change 2011, 2, pp.45-65.
    Eltahir, E.A.B. and Yeh, P.J.F., 1999. On the asymmetric response of aquifer water level to floods and droughts in Illinois, Water Resour. Res., 35(4), pp.1199-1217.
    Estrela, T., Marcuello, C. and Iglesias, A., 1996. Water Resources Problems in Southern Europe, European Environmental Agency.
    Hewitt, K., 1997. Regions at Risk: A Geographical Introduction to Disasters. Addison-Wesley Longman, UK (1997).
    IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press.
    Kendall, M.G., 1975. Rank correlation methods, Charles Griffin, London. Lloyd-Hughes, B. and Saunders, M.A., 2002. A drought climatology for Europe, Int. J. Climatol., 22, 1571–1592.
    Mann, H.B., 1945. Non-parametric test against trend, Econometrica, 13, pp.245-259.
    McKee, T.B., Doesken, N.J. and Leist, J., 1993. The relationship of drought frequency and duration time scales, 8th Conference on Applied Climatology, 17–22 January 1993, Anaheim, California, pp.179-184.
    Mishra, A.K. and Singh V.P., 2010. A review of drought concepts, J Hydrol, 391, pp.202-216.
    Nalbantis, I., 2008. Evaluation of a Hydrological Drought Index, European Water, 23(24), pp.67-77.
    Obasi, G.O.P., 1994. WMO’s role in the international decade for natural disaster reduction. Bull. Am. Meteorol. Soc., 75 (9) (1994), pp. 1655-1661.
    Palmer, W.C., 1965. Meteorologic Drought. US Department of Commerce, Weather Bureau, Research Paper No.45, pp.58.
    Palmer, W.C., 1968. Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise, 21, pp.156-161.
    Scheidleder, A., Grath, J., Winkler, G., Stärk, U., Koreimann, C., Gmeiner, C., Nixon, S., Casillas, J., Gravesen, P., Leonard, J. and Elvira, M., 1999. Groundwater Quality and Quantity in Europe, European Environment Agency.
    Shafer, B.A. and Dezman, L.E., 1982. Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas. In: Preprints, Western SnowConf., Reno, NV, Colorado State University, pp.164-175.
    Sheffield, J. and Wood, E.F., 2008. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 13, pp.79-105.
    Sheffield, J., Wood, E.F. and Roderick, M.L., 2012. Little change in global drought over the past 60 years, Nature, 491, pp.435-440.
    Sohrabi, M.M., Ryu, J.H., Abatzoglou, J., and Tracy, J., 2015. Development of Soil Moisture Drought Index to Characterize Droughts, Journal of Hydrology, 20(on line).
    Tallaksen, L.M. and van Lanen, H.A.J., 2004. Hydrological drought Processes and estimation methods for streamflow and groundwater, Developments in Water Sciences 48, Elsevier, the Netherlands.
    Tsakiris, G. and Vangelis, H., 2005. Establishing a Drought Index Incorporating Evapotran-spiration. European Water, 9(10), pp.3-11.
    Taylor, R.G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J.S., Edmunds, M., Konikow, L., Green, T.R., Chen, J.Y., Taniguchi, M., Bierkens, M.F.P. MacDonald, A., Fan, Y., Maxwell, R.M., Yechieli, Y., Gurdak, J.J., Allen, D.M., Shamsudduha, M., Hiscock, K., Yeh, P.J.F., Holman, I. and Treidel, H., 2013. Ground water and climate change, NATURE CLIMATE CHANGE, 3(4), pp.322-329.
    van Lanen, H.A.J. and Peters, E., 2000. Definition, effects and assessment of groundwater droughts. In: Vogt, J.V., Somma, F. (Eds.), Drought and Drought Mitigation in Europe. Kluwer Academic Publishers, Dordrecht, pp.49-61.
    van Lanen, H.A.J., Wanders, N., Tallaksen, L.M., and Van Loon, A.F., 2013. Hydrological drought across the world: impact of climate and physical catchment structure, Hydrology and Earth System Sciences, 17: 1715-1732
    White, I., Falkland, T. and Scott, D., 1999. Droughts in small coral islands: case study, South Tarawa, Kiribati. IHP-V, Technical Documents in Hydrology, No. 26.
    Wilhite, D.A. and Glantz, M.H., 1985. Understanding the drought phenomenon: the role of definitions, Water Int, 10, pp.111-120.
    Wilhite, D.A., 2000b. Drought as a natural hazard: concepts and definitions. D.A. Wilhite (Ed.), Drought: A Global Assessment, vol. 1, Routledge, New York (2000), pp. 1-18.
    Wilhite, D.A., 2000a. Drought: A Global Assessment, Vols. 1 and 2. Routledge, New York, 89-104, 1 and 2, Routledge, New York, pp. 129-448.
    Yevjevich, V., 1967. An Objective Approach to Definitions and Investigations of Continental Hydrologic Drought. Hydrology Paper No. 23, Colorado State Univ., Fort Collins, Colo.
    Zargar, A., Sadiq, R., Naser B., and Khan F.I., 2011. A review of drought indices, Environmental Reviews, 19(NA), pp.333-349
    朱容練、朱吟晨、林士堯、劉俊志、陳永明,2015,國家災害防救科技中心災害防救電子報,第124期。
    莊家棋,2018,「應用標準化地下水位指數法評估濁水溪沖積扇地下水水位枯旱狀況之研究」,國立成功大學資源工程學系碩士論文。
    經濟部水利署,2014a,「濁水溪地下水智慧型預測模式之研究」,經濟部水利署。
    經濟部水利署,2015,水利統計年報,經濟部水利署編印。
    經濟部水利署,2016,「臺灣地區乾旱時期地下水備援用水評估系統建置」,經濟部水利署。
    經濟部水利署,2016,「高屏與嘉南集水區地下水開發區位及其可開發量評估(1/2)」,經濟部水利署。
    經濟部水利署,2017,「高屏與嘉南集水區地下水開發區位及其可開發量評估(2/2)」,經濟部水利署。
    經濟部水利署,2017,「中華民國105年臺灣地區水文年報」,經濟部水利署。
    葉信富、張家富、李哲瑋、李振誥,2016a,以標準化地下水與降雨指數法評估高屏溪流域之乾旱特性,中華水土保持學報,第47卷,第1期,45-52。
    葉信富、葉振峰、李振誥,2016b,以Mann-Kendall及Theil-Sen檢定法評估臺灣地區長期河川流量時空趨勢變化,第47卷,第2期,73-83。

    無法下載圖示 校內:2024-07-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE