| 研究生: |
郭俊儀 Kuo, Chun-I |
|---|---|
| 論文名稱: |
訊框層級前向糾錯機制在突發損失通道之研究 Study on Frame Level Forward Error Correction for Video Streaming over a Burst-loss Channel |
| 指導教授: |
謝錫堃
Shieh, Ce-Kuen |
| 共同指導教授: |
黃文祥
Hwang, Wen-Shyang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 前向糾錯 、多媒體傳輸 、品質服務 |
| 外文關鍵詞: | Forward Error Correction, Multimedia Communications, Quality of Service |
| 相關次數: | 點閱:99 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現行的網路應用上,無線網路已經是不可厚非的趨勢。相較於有線網路的特性,無線網路不論是在頻寬使用上或是資料傳輸的特性也都有許多限制。而多媒體傳輸也受到許多挑戰,為了提升多媒體傳輸於具有移師資料特性的通道上,在視訊串流上使用不等量錯誤保護系統是項非常普及的技術之一,前向糾錯(Forward Error Correction, FEC)是種在損失通道上常用於提升視訊串流品質的錯誤回復機制。此外,在柏努利通道(Bernouli channel)上已有針對不同權重的串流訊框,在限制的傳輸速率下而提出的訊框層級(frame level)前向糾錯機制。然而,現存的各種傳輸環境常常都會造成突發性的損失,例如現行的無線網路也都具備這種損失特性。相較於柏努利通道的特行,在突發通道上前向糾錯機制的效能則會受到影響而降低。因此,針對影像的特性,在本篇提出評估模型來分析影像串流在突發損失通道上的影響,並且透過網路模擬工具(Network Simulation 2, NS-2)來的實驗來驗證模組的正確性,在接收端回饋網路的偵測狀態,如封包損失率、平均突發損失長度等。傳送端則可以透過接收到的資訊而評估網路狀態進行前向糾錯調整控制,經由網路模擬數據分析與驗證,我們提出的評估模型可以有效的針對突發性遺失通道進行準確的分析與估算,進而可以讓前向糾錯機制應用於影像串流上效能得以提升。
Unequal error protection systems are a popular technique for video streaming. Forward error correction (FEC) is one of error control techniques to improve the quality of video streaming over lossy channels. Moreover, frame-level FEC techniques have been proposed for video streaming due to different priority video frames within the transmission rate constraint on a Bernoulli channel. However, various communication and storage systems are likely corrupted by bursts of noise in the current wireless behavior. If the burst losses go beyond the protection capacity of FEC, the efficacy of FEC can be degraded. Therefore, our proposed model allows an assessment of the perceived quality of H.264/AVC video streaming over a bursty channel, and was validated by simulation experiments on the NS-2 network simulator at a given estimate of the packet loss ratio and average burst length. The results suggest a useful reference in designing the FEC scheme for video applications, and as the video coding and channel parameters are given, the proposed model can provide a more accurate evaluation tool for video streaming over bursty channels and help to evaluate the impact of FEC performance on different burst-loss parameters.
[1] A. Nafaa; T. Taleb; L. Murphy, Forward error correction strategies for media streaming over wireless networks. IEEE Communications Magazine ; 46(1), pp. 72–79, DOI: 10.1109/MCOM.2008.4427233., 2007.
[2] S.R. Kang; D. Loguinov, Modeling best-effort and FEC streaming of scalable video in lossy network channels. IEEE/ACM Trans. Networking ; 15(1), pp. 187–200, DOI: 10.1109/TNET.2006.890110., 2007.
[3] Z. Liang; X. Dong; T. Aaron Gulliver; X. Liao, Performance of transmitted reference pulse cluster ultra-wideband systems with forward error correction. International Journal of Communication Systems ; 27(2), pp. 265–276, DOI: 10.1002/dac.2359., 2014.
[4] C. Bouras; N. Kanakis; V. Kokkinos; A. Papazois, Application layer forward error correction multicast streaming over LTE networks. International Journal of Communication Systems ; 26(11), pp. 1459–1474, DOI: 10.1002/dac.2321., 2013.
[5] D. Kliazovich; S. Redana; F. Granelli, Cross-layer error recovery in wireless access networks: The ARQ proxy approach. International Journal of Communication Systems ; 25(4), pp. 461–477, DOI: 10.1002/dac.1271., 2012.
[6] A. Inoie, Audio quality in lossy networks for media-specific forward error correction networks. International Journal of Communication Systems ; 27(2), pp. 289–302, DOI: 10.1002/dac.2361., 2014.
[7] A.E. Mohr; E.A. Riskin; R.E. Ladner, Unequal loss protection: graceful degradation of image quality over packet erasure channels through forward error correction. IEEE Journal on Selected Areas in Communications ; 18(6), pp. 819–828, DOI: 10.1109/49.848236., 2000.
[8] B. Masnick; J. Wolf, On linear unequal error protection codes. IEEE Trans. Inform. Theory ; 13(4), pp. 600–607, DOI: 10.1109/TIT.1967.1054054., 1967.
[9] E. Baccaglini; G. Marchetto; T. Tillo; G. Olmo, Efficient slice-aware H.264/AVC video transmission over time-driven priority networks. International Journal of Communication Systems ; DOI: 10.1002/dac.2578., 2013.
[10] X. Liu; L.T. Yang; W. Zhu; K. Sohn, Efficient temporal error concealment algorithm for H.264/AVC inter frame decoding. International Journal of Communication Systems ; 24(10), pp. 1282–1297, DOI: 10.1002/dac.1193., 2011.
[11] J.L. Chen; S.W. Liu; S.L. Wu; M.C. Chen, Cross-layer and cognitive QoS management system for next-generation networking. International Journal of Communication Systems ; 24(9), pp. 1150–1162, DOI: 10.1002/dac.1218., 2011.
[12] X. Yang; C. Zhu; G.Z. Li; X. Lin; N. Ling, An unequal packet loss resilience scheme for video over the internet. IEEE Trans. Multimedia ; 7(4), pp. 753–765, DOI: 1109/TMM.2005.846782., 2005.
[13] Y. Zhang; S. Qin; Z. He, Transmission distortion-optimized unequal loss protection for video transmission over packet erasure channels. In Proc. IEEE Int. Conf. Multimedia and Expo ; pp. 1–6, DOI: 10.1109/ICME.2011.6011931., 2011.
[14] T. Tillo; E. Baccaglini; G. Olmo, Unequal protection of video data according to slice relevance. IEEE Trans. Image Process ; 20(6), pp. 1572–1582, DOI: 10.1109/TIP.2010.2095865., 2011.
[15] Y. Liu; S.B. Qaisar; H. Radha; A. Men, On unequal error protection with low density parity check codes in scalable video coding. In Proc. Information Sciences and System ; pp. 793–798, DOI: 10.1109/CISS.2009.5054826., 2009.
[16] L. Kondrad; I. Bouazizi; M. Gabbouj, LDPC FEE code extension for unequal error protection in DVB-T2 system: design and evaluation. International Journal of Digital Multimedia Broadcasting ; DOI: 10.1155/2012/834924., 2012.
[17] S. Ahmad; R. Hamzaoui; M.M. Al-Akaidi, Unequal error protection using fountain codes with application to video communication. IEEE Trans. on Multimedia ; 13(1), pp. 92–101, DOI: 10.1109/TMM.2010.2093511., 2011.
[18] Z. Lou; L. Song; S. Zheng; N. Ling, Raptor codes based unequal protection for compressed video according to packet priority. IEEE Trans. on Multimedia ; 15(8), pp. 2208–2213, DOI: 10.1109/TMM.2013.2280561., 2013.
[19] D. Loguinov; H. Radha, End-to-end internet video traffic dynamic: statistical study and analysis. In Proc. IEEE INFOCOM ; 2, pp. 723–732, DOI: 10.1109/INFCOM.2002.1019318., 2002.
[20] J.C. Bolot, End-to-end packet delay and loss behavior in the Internet. In Proc. ACM SIGCOMM ; 23(4), pp. 289–298, DOI: 10.1145/167954.166265., 1993.
[21] K. Kang; H. Shin, Reduced data rates for energy efficient Reed-Solomon FEC on fading channels, IEEE Trans. Vehicular Technology ; 58(1), pp. 176–187, DOI: 10.1109/TVT.2008.923671., 2009.
[22] C.C. Lai; P.W. Tiang; M.K. Abdullah; B.M. Ali; M.A. Mahdi, FEC performance analysis based on Poisson and bursty error patterns for SDH and OTN systems. Photonic Network Communications ; 11(3), pp. 265–270, DOI: 10.1007/s11107-005-7353-5., 2006.
[23] X. Yu; J.W. Modestino; R. Kurceren; Y.S. Chan, A model-based approach to evaluation of the efficacy of FEC coding in combating network packet losses. IEEE/ACM Trans. on Networking ; 16(3), pp. 628–641, DOI: 10.1009/TNET.2007.900416., 2008.
[24] J. Chakareski; P.A. Chou, Application layer error-correction coding for rate-distortion optimized streaming to wireless clients. IEEE Trans. Communication ; 52(10), pp. 1657–1687, DOI: 10.1109/ICASSP.2002.5745158., 2004.
[25] W.T. Tan; A. Zakhor, Video multicast using layered FEC and scalable compression. IEEE Trans. Circuits System Video Technology ; 11(3), pp. 373–386, DOI: 10.1109/76.911162., 2001
[26] Z. Li; J. Chakareski; L. Shen; L. Wang; Video quality in transmission over burst-loss channels: A forward error correction perspective. IEEE Commun Letters ; 15(2), pp. 238–240, DOI: 10.1109/LCOMM.2011.122810.101931., 2011
[27] Z. Li; J.Chakareski; X. Niu; Y. Zhang; W. Gu, Modeling and analysis of distortion caused by Markov-model burst packet losses in video transmission. IEEE Trans. Circuits System Video Technology ; 19(7), pp. 917–931, DOI: 10.1109/TCSVT.2009.2022806., 2009.
[28] C.H. Lin; N.K. Chilamkurti; S. Zeadally; C.K. Shieh, Performance modeling of MPEG4 video streaming over IEEE 802.11 using distribution coordination function. Wireless Communication and Mobile Computing ; 11(9), pp. 1312–1322, DOI: 10.1002/wcm.938., 2010.
[29] H. Wu; M. Claypool; R. Kinicki, Adjusting forward error correction with temporal scaling for TCP-friendly streaming MPEG. ACM Trans. on Multimedia Computing, Communication and Applications (TOMCCAP) ; 1(4), pp. 315–337, DOI: 10.1145/1111604.1111605., 2005.
[30] C.I. Kuo; C.H. Shih; C.K. Shieh; W.S. Hwang; C.H. Ke, Modeling and analysis of frame-level forward error correction for MPEG video over burst-loss channels. Applied Mathematics & Information Sciences ; 8(4), pp. 1845–1853, DOI: 10.12785/amis/080442., 2014.
[31] J.C. Bolot; A. Vega-Garcia, The case for FEC-based error control for packet audio in the Internet. In Proc. ACM Int. Conf. Multimedia Systems 1997.
[32] H. Sanneck; G. Carle, A framework model for packet loss metrics based on loss run length. In Proc. SPIE/ACM SIGMM Multimedia Computing and Networking ; pp. 177 –187, DOI: 10.1117/12.373520., 2000.
[33] B. Vuectic; J. Du, Channel modeling and simulation in satellite mobile communication systems. IEEE Journal Selected Areas Communications ; 10(8), pp. 1209–1218, DOI: 10.1109/49.166746., 1992.
[34] C.C. Tan; N.C. Beaulieu, On first-order Markov modeling for the Rayleigh fading channel. IEEE Trans. Communications ; 48(12), pp. 2032–2040, DOI: 10.1109/26.891214., 2000.
[35] J. Mitchell; W. Pennebaker, MPEG Video: Compression Standard. Chapman and Hall, ISBN 0412087715., 1996.
[36] C. H. Lin; C. H. Ke; C. K. Shieh; N. Chilamkurti, “The packet loss effect on MPGE video transmission in wireless networks,” in IEEE International Conference on Advanced Information Networking and Applications (AINA’06), Austria, pp. 656 – 572, April 2006.
[37] A. Ziviani; B. E. Wolfinger; J. F. Rezende; O. C. M. B. Duarte; S. Fdida, “Joint adoption of QoS schemes for MPEG streams,” Journal of Multimedia Tools and Applications, vol. 26, pp. 59 – 80, May 2005.
[38] L. Atzori; F. G. B. De Natale; C. Perra, “A spatio-temporal concealment technique using boundary matching algorithm and mesh-based warping (BMA-MBW),” IEEE Transaction on Multimedia, vol. 3, no. 3, pp. 326 – 338, Sept. 2001.
[39] P. Salama; N. B. Schroff; E. J. Delp, “Error concealment in MPEG video streams over ATM networks,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 1129 – 1144, June 2000.
[40] K. Takahata; N. Uchida; Y. Shibata, “Packet error and frame rate controls for real time video stream over wireless LANs,” in International Conference on Distributed Computing Systems Workshops, ICDCSW2003, pp. 594 – 599, May 2003.
[41] K. Park; W. Wang, “AFEC: an adaptive forward error correction protocol for end-to-end transport of real-time traffic,” in International Conference on Computer Communications and Networks, ICCCN1998, pp. 196 – 205, Oct. 1998.
[42] A. Chockalingam; M. Zorzi, “Wireless TCP performance with linklayer FEC/ARQ,” in IEEE Conference on Computer and Communications, ICC1999, pp. 1212 – 1216, Jun. 1999.
[43] V. Guruswami; M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometric codes,” IEEE Transaction on Information Theory, vol. 45, pp. 1757 – 1767, 1999.
[44] V. Roca, “Design, evaluation and comparison of four large block FEC codecs, LDPC, LDGM, LDGM staircase and LDGM triangle, plus a Reed-Solomon small block FEC codec,” INRIA res. rep. RR-5225, Jun. 2004.
[45] P. Frossard, “FEC Perofrmance in Multimedia Streaming,” IEEE Communication Letters, vol. 5, no. 3, Mar. 2001.
[46] A. Naghdinezhad; A. Farmahini-Farahani; M. R. Hashemi; Omid Fatemi, “An Adaptive Unequal Error Protection Method for Error Resilient Scalable Video Coding Using Particle Swarm, IEEE International Conference on Signal Processing and Communications, 2007.