簡易檢索 / 詳目顯示

研究生: 安寶庭
Ann, Bao-Ting
論文名稱: 肌肉在伸長與縮短位置下接受電刺激的疲勞過程模型
Modeling of the Fatigue Processes in Electrically Elicited Contractions of Lengthened and Shortened Muscles Rectus Femoris
指導教授: 陳家進
Chen, Jai-Jin
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 29
中文關鍵詞: 肌肉疲勞功能性電刺激肌電圖
外文關鍵詞: electromyography, functional electrical stimulation, muscle fatigue
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇研究觀察人體股四頭肌接受電刺激時,當它被擺在伸長或縮短的位置時肌肉疲勞的情形,利用誘發肌電訊號觀察肌肉活性,而誘發肌電訊號的特徵觀察包含峰對峰值、達峰值時間與峰對峰間隔時間,這些量測值隨著疲勞的過程所形成的曲線,經由雙曲線正切函數的曲線近似便可以取出時間常數、轉折點及相對剩餘值。
      為了驗證實驗的觀察,本篇研究建構一誘發肌電訊號的數學模型以模擬疲勞的過程,這種結構性的肌電訊號模型考量運動單元的數量、形式及電極與運動單元領域距離來模擬誘發肌電訊號。以不同組成的慢速(型一)與快速(型二)肌肉纖維。誘發肌電訊號是以不同比例的型一與型二肌肉纖維所產生的運動單元動作電位的加成所形成,以非線性的最佳化技術從誘發肌電訊號中粹取型一與型二肌肉纖維的振幅與時間特徵,先以模擬的訊號來驗證特徵粹取的演算法。
      實驗結果顯示肌肉在較短的位置時,力量輸出與肌電訊號的時間常數及轉折點都比肌肉在較長的位置時大,這顯示肌肉在較長的位置時接受電刺激疲勞的較早也較快,這也可以從肌電圖的特徵與力量曲線中觀察得到。結論:由數學模型可以發現肌肉在較長位置時的易疲勞與型二肌肉纖維的快速耗盡有關,本研究證實了此數學模型用於肌肉疲勞研究中觀察重要生理參數的可行性。

      This study compared the different fatigue processes of electrically elicited muscle contractions of rectus femoris in both lengthened and shortened positions. Stimulus-evoked electromyography (EMG), after artifact suppression, was used to observe the fatigue process. The measured EMG features included peak to peak amplitude, rise time to peak, and peak to peak duration. The measurements were fitted by a hyperbolic tangent function, which allowed the observation of their time constants, inflection times and relative residual levels during the fatigue process. To verify the observation from experiment, a mathematical model of the evoked EMG was constructed to simulate the changes of EMG features during the fatigue process. A structured model considering the numbers and types of MU and the electrode-motor unit territory distance was utilized to simulate stimulus-evoked EMG. The evoked EMG was simulated by summing up the MUAPs generated from different proportions of fast-twitch or slow-twitch muscle fibers. A nonlinear optimization technique was utilized to extract amplitude and duration features of type I and type II MUs from the stimulus-evoked EMG. The experimental results show that the time constants of torque output and EMG temporal features as well as the inflection time measured in the shortened positions are larger than those in the lengthened position. These evidences indicate that electrically elicited muscle contraction in lengthened position is prone to fatigue earlier and faster. Furthermore, the mathematical modeling reveals that the early fatigue in the lengthened muscles was resulted from the fast depletion of the type II MU. Our study confirms the feasibility of using this mathematical model to observe the important physiological changes from the evoked EMG.

    Table of Contents Abstract……………………………………………………………………………………i 中文摘要…………………………………………………………………………………ii Table of Contents…………………………………………………………………………iii List of Tables……………………………………………………………………………v List of Figures……………………………………………………………………………vi Chapter 1 Introduction………………………………………………………………………1 1.1 Introduction to functional electrical stimulation ……………………………1 1.2 Muscle fatigue via functional electrical stimulation…………………………3 1.3 Length effect in muscle fatigue………………………………………………………4 1.4 The aims of this study…………………………………………………………………7 Chapter 2 Methods……………………………………………………………………………8 2.1 Experimental Protocol…………………………………………………………………8 2.2 Feature Extraction of Stimulus-Evoked EMG………………………………………9 2.3 Statistical Analysis…………………………………………………………………11 2.4 Computer simulation……………………………………………………………………11 Chapter 3 Results……………………………………………………………………………14 3.1 Characteristics of Muscle Fatigue at Different Knee Angles………………14 3.2 Computer Simulation……………………………………………………………………18 Chapter 4 Discussion and Conclusion……………………………………………………22 4.1 Physiological Implications of Change in EMG Features and Torque during Muscle Fatigue…………………………………………………………………………………………22 4.2 Effect of Muscle Length on the Fatigue Process…………………………………23 4.3 Conclusions………………………………………………………………………………25 Reference…………………………………………………………………………………………26

    [1] Arendt-Nielsen L, Mills KR, Forster A. Changes in muscle fiber conduction velocity, mean power frequency, and mean EMG voltage during prolonged submaximal contractions. Muscle Nerve 12:493-7, 1989.
    [2] Bilodeau M, Houck J, Cuddeford T, Sharma S, Riley N. Variations in the relationship between the frequency content of EMG signals and the rate of torque development in voluntary and elicited contractions. Journal of Electromyography & Kinesiology 12(2):137-45, 2002.
    [3] Boom BK, Mulder AJ, Veltink PH. Fatigue during functional neuromuscular stimulation. Progr Brain Res 97:409-18, 1993.
    [4] Chen JJJ, Yu NY. The validity of stimulus-evoked EMG for studying muscle fatigue characteristics of paraplegic subjects during dynamic cycling movement. IEEE Trans Rehab Eng 5:170-8, 1997.
    [5] Chesler NC, Durfee WK. Surface EMG as a fatigue indicator during FES-induced isometric muscle contractions. J Electromyogr Kinesiol 7:27-37, 1997.
    [6] Erfanian A, Chizeck HJ, Hashemi RM. Evoked EMG in electrically stimulated muscle and mechanisms of fatigue. Proc. RESNA 17th Annual Conf., Nashville, Tennessee. 341-2, 1994a.
    [7] Delagi EF, Perotto A. Anatomic guide for the electromyographer: the limbs. 2nd ed., Thomas, Springfield, 1980.
    [8] Erfanian A, Chizeck HJ, Hashemi RM. The relationship between joint angle and evoked EMG in electrically stimulated muscle. Proc. RESNA 17th Annual Conf., Nashville, Tennessee. 345-6, 1994b.
    [9] Farina D, Merletti R. A novel approach for precise simulation of the EMG signal detected by surface electrode. IEEE Trans on Biomed Eng, 48:637-646, 2001a.
    [10] Farina D, Merletti R, Nazzaro M, Caruso I. Effect of joint angle on EMG variables in leg and thigh muscles: what influence does muscle length and electrode location have on EMG signals during dynamic tasks? IEEE Engineering in Medicine and Biology, 62-71, 2001b.
    [11] Farina D, Fosci M, Merletti R. Motor unit recruitment strategies investigated by surface EMG variables: An experimental and model based feasibility study. J Appl Physiol, 92:235-247, 2002.
    [12] Fitch S, McComas A. Influence of human muscle length on fatigue. J Physiol 362:205-13, 1985
    [13] Fuglevand AJ, Winter DA, Patla AE, Stashuk D. Detection of motor unit action potentials with surface electrode size and spacing. Biol Cybern 67:143-53, 1992.
    [14] Giat Y, Mizrahi J, Levy M. A model of fatigue and recovery in paraplegic's quadriceps muscle subjected to intermittent FES. J Biomech Eng 118:357-366, 1996.
    [15] Girsch W, Bijak M, Heger G, Koller R, Lanmuller H, Mayr W, Thomas H, Losert U. Monitoring of FES-induced muscle-activity by continuous EMG-recording. Int J Artif Org 18:340-4, 1995.
    [16] Hainaut K, Duchateau J. Muscle fatigue, effects of training and disuse. Muscle Nerve 12:660-9, 1989.
    [17] Juel C. Muscle action potential propagation velocity changes during activity. Muscle Nerve 11:714-9, 1988.
    [18] Knaflitz M, Merletti R, DeLuca CJ. Inference of motor unit recruitment order in voluntary and electrically elicited contractions. J Appl Physiol 68:1657-67, 1990.
    [19] Levy M, Kushnir T, Mizrahi J, Itzchak Y. In vivo 31P NMR studies of paraplegics' muscles activated by functional electrical stimulation. Magn Res Med 29:53-8, 1993.
    [20] Levy M, Mizrahi J, Susak Z. Recruitment, force and fatigue characteristics of quadriceps muscles of paraplegics isometrically activated by surface functional electrical stimulation. J Biomed Eng 12(3):150-6, 1990.
    [21] Merletti R, Knaflitz M, DeLuca CJ. Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions. J Appl Physiol 69:1810-20, 1990.
    [22] Merletti R, Lo Conte LR. Advances in processing of surface myoelectric signals: Part 1. Med Biol Eng Comput 33:362-72, 1995.
    [23] Merletti R, Lo Conte LR, Cisari C, Massazza U. Effect of ankle joint position on electrically evoked surface myoelectric signals of the tibialis anterior muscle. Arch Phys Med Rehabil 74:501-6, 1993.
    [24] Minzly J, Mizrahi J, Hakim N, Liberson A. A stimulus artefact suppresser for EMG recording during FES by a constant-current stimulator. Med Biol Eng Comput 31:71-5, 1993.
    [25] Mizrahi J. Fatigue in muscles activated by functional electrical stimulation. Crit Rev Phys Rehabil Med 9:93-129, 1997.
    [26] Mizrahi J, Levy M, Ring H, Isakov E, Liberson A. EMG as an indicator of fatigue in isometrically FES-activated paralyzed muscles. IEEE Trans Rehab Eng 2:57-65, 1994.
    [27] Muhammad W. Meste O. Rix H. Farina D. A pseudojoint estimation of time delay and scale factor for M-wave analysis. IEEE Transactions on Biomedical Engineering. 50(4):459-68, 2003.
    [28] Okajima Y, Chino N, Tsubahara A, Kimura A. Waveform analysis of compound nerve action potentials: A computer simulation. Arch Phys Med Rehabil 75:960-4, 1994.
    [29] Rabischong E, Guiraud D. Determination of fatigue in the electrically stimulated quadriceps muscle and relative effect of ischaemia. J Biomed Eng 15:443-50, 1993.
    [30] Rabischong E, Ohanna F. Effects of functional electrical stimulation on evoked muscular output in paraplegic quadriceps muscle. Paraplegia 30:467-73, 1992.
    [31] Rabischong E. Surface action potential related to torque output in paraplegics electrically stimulated quadriceps muscle. Med Eng Phys 18:538-47, 1996.
    [32] Sacco P, McIntyre DB, Jones DA, Effects of length and stimulation frequency on fatigue of the human tibialis anterior muscle. J Appl Physiol 77:1148-54, 1994.
    [33] Smith LK, Weiss E, Lehmkuhl LD. Brunnstrom's Clinical Kinesiology. 5th ed. Info Access & Distribution Pte Ltd.: Singapore, 135-6, 1996.
    [34] Tepavac D, Schwirtlich L. Detection and prediction of FES-induced fatigue. J Electromyogr Kinesiol 7:39-50, 1997.
    [35] Winslow J, Jacobs PL, Tepavac D. Fatigue compensation during FES using surface EMG. Journal of Electromyography & Kinesiology. 13(6):555-68, 2003

    下載圖示 校內:2005-08-04公開
    校外:2005-08-04公開
    QR CODE