簡易檢索 / 詳目顯示

研究生: 潘立朋
Pan, Li-Peng
論文名稱: 利用奈米銀星芒狀粒子聚落製作膠帶式拉曼增顯基板以快速檢測農作物農藥殘留
Ag nanostar-clusters on adhesive tape as a SERS substrate for rapid detection of residual pesticide on crops
指導教授: 廖峻德
Liao, Jiunn-Der
共同指導教授: 劉浩志
Liu, Bernard HaoChih
王士豪
Wang, Shyh-Hau
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 60
中文關鍵詞: 表面增顯拉曼散射奈米銀星芒狀粒子聚落可繞式基板農藥殘留檢測
外文關鍵詞: Surface Enhancement Raman Scattering, Silver nanostar clusters, Flexible substrate, residual pesticide detection
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本拉曼散射增顯基板使用市售透明膠帶作為基板,以懸浮溶液法製作奈米銀星芒狀粒子聚落,並以滴定法將之裝飾在膠帶式基板上以作為拉曼增顯所必須之奈米級結構。此種基板可藉由簡單的黏貼法擷取待測物,因此,本基板不僅可以優化基板的待測物擷取能力,還可以強化拉曼散射增顯效應。對於本論文所要檢測的農藥殘留而言,擁有快速且可於複雜表面取樣的特殊效果,針對於果皮表面農藥殘留檢測亦具有很好的優勢。基板的製作使用奈米銀星芒狀粒子聚落,這種形狀的粒子的尖角狀形貌可以提高電荷聚集以加強電場效果,最終增強SERS效應,因此利用奈米銀星芒狀粒子做表面改質具有良好的效果。在表面結構研究中,隨著銀奈米星芒狀粒子聚落前驅溶液之濃度提高,最終表面結構也會跟著緻密,到0.2 M時會產生許多塊狀結構。以R6G作為探測分子以分析本基板所具有的表面拉曼增強效應,實驗結果顯示:使用雷射波長785 nm可激發相對於表面結構更好的共振效果,而由拉曼圖譜顯示,以濃度0.05 M的奈米銀溶液可以獲得最高的拉曼增顯效應,且經過計算得知,增顯因子(EF)約為1.7107達到了可單分子檢測之能力。在確立基板拉曼增顯能力後,以此作為研究農作物農藥殘留之基板,以加保利、益滅松等常見之農藥作為檢測物,分別對兩種農藥做不同濃度之拉曼光譜分析,且找出檢測極限濃度,研究結果顯示,加保利可達到10-6 M,而益滅松可達到10-7 M,兩種皆可檢測到低於政府規範之最低農藥容許量。另外由於一般蔬果之農藥噴灑,會使用多於一種之農藥,因此最後會分析加保利以及益滅松的混合農藥,結果更進一步加強此種拉曼增顯基板之實用性。因此,以此奈米銀星芒狀粒子聚落裝飾市售膠帶作為拉曼散射增顯基板,不僅可以達到理想的拉曼增顯強度,另外對於果皮表面農藥殘留檢測也可檢測到低於政府所規範之標準,此外基板的製作相較於傳統方法便宜且快速簡單,擷取過程也少了傳統繁複且較為昂貴的製程。

    The Raman scattering enhanced substrate is produced by using a commercially available scotch tape as the substrate, and the silver nanostar-clusters is prepared by the suspension solution method, and is decorated by the titration method on a tape substrate as the Raman necessary nano-scale structure. The substrate can be used to extract the molecule by a simple paste and peel off method. Therefore, the substrate can not only optimize the sample extraction capability of the substrate, but also enhance the Raman scattering enhancement effect. For the pesticide residues to be tested in this thesis, it has a special effect of sampling quickly on complex surfaces, and it has an advantage for the detection of pesticide residues on the surface of the fruit’s peel. The substrate is decorated by silver nanostar-clusters. The sharp-angled morphology of particles of this shape can increase the charge accumulation to enhance the electric field effect, and finally enhance the SERS effect. Therefore, the surface modification is performed well by using silver nanostar-clusters. In the research of surface structure, as the concentration of the precursor solution increases, the final surface structure will also be dense, and many block structures will be observed at 0.2 M. R6G was used as the probe molecule to analyze the surface Raman enhancement effect of the substrate. The Raman spectrum results show that the laser wavelength of 785 nm can excite better resonance effect with respect to the surface structure, while the the concentration of 0.05 M can obtain the highest Raman effect. The enhancement factor (EF) is calculated at about 1.7107, which indicates that the substrate can achieve the ability of single molecule detection. After establishing the Raman enhancement ability of the substrate, common pesticide residues, such as Phosmet and Carbaryl in crops were detected under different concentrations. Finding the limit of detection (LOD), the results show that the Carbaryl can reach 10-6 M, and the Phosmet can reach 10-7 M, both of which can detect the minimum pesticide allowance below the government’s regulations. In addition, due to the spraying of pesticides in fruits and vegetables, more than one type of pesticide will be used. Therefore, the mixed pesticides of Carbaryl and Phosmet will be analyzed in the end, and the results can certificate the practical application of the substrate. In summary, the silver nanostar-clusters is used to decorate the commercially available tape as a Raman scattering enhancement substrate, which can not only achieve the desired Raman enhancement intensity, but also detect the pesticide residue on the surface of the fruit’s peel which can reach the standard regulated by the government. In addition, the production of the substrate is cheaper and faster than the traditional method, and the extraction process is also less expensive.

    目錄 摘要 I SUMMARY II 誌謝 XIV 目錄 XVI 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1.1前言 1 1.2研究動機 3 1.3可行性 4 1.4研究目的 4 第二章 文獻回顧與理論基礎 5 2.1文獻回顧與理論基礎章節架構 5 2.2表面增顯拉曼散射基板的製作 5 2.2.1減去法(Top-down techniques) 5 2.2.2加成法(Bottom-up techniques) 6 2.2.3複合型(Combination technique) 7 2.2.4模板輔助型(Template-assisted fabrication) 7 2.2.5膠帶式基板製程(Tape like SERS-active substrate) 7 2.3奈米級顆粒的合成與應用 8 2.4振動光譜 9 2.5拉曼光譜基本理論 11 2.6表面增顯拉曼散射光譜於奈米結構表面之機制 14 2.6.1電磁效應與化學效應 14 2.6.2表面電漿(surface plasmon) 15 2.6.3拉曼光譜之極化誘發理論 15 2.7文獻回顧結語 16 第三章 材料與方法 18 3.1材料與方法章節架構 18 3.2實驗步驟 19 3.2.1基板洗滌 19 3.2.4以R6G作為探測分子 20 3.2.5農藥標準溶液製備 20 3.2.6實際採取果皮上的農藥 20 3.2.7拉曼檢測 21 3.2.8拉曼光譜分析之校正 22 3.2.9訊號處理 23 3.2.10分析再現性 24 3.2.11增顯因子(enhancement factor, EF)之評估 24 3.3分析儀器 26 3.3.1掃描式電子顯微鏡(SEM) 26 3.3.2顯微拉曼光譜儀(Raman spectrometer) 27 第四章 SERS活性基板應用於分子探針之研究 29 4.1 SERS活性基板應用於分子探針之研究章節架構 29 4.2表面形貌的分析 29 4.2.1 單顆奈米銀星芒狀粒子的結構 29 4.2.2比較不同濃度之奈米銀星芒狀粒子 31 4.2.3 進一步比較不同倍率下的表面形貌 32 4.3以R6G作為分子探針以評估拉曼增顯能力 33 4.3.1:R6G在於拉曼散射光譜上之指紋圖譜 33 4.3.2:比較膠帶式奈米銀星芒狀顆粒與單純膠帶之拉曼增顯能力 34 4.3.3:比較不同濃度奈米銀星芒狀粒子的拉曼效應 35 4.4:比較不同濃度R6G對於拉曼散射增顯強度 38 4.5拉曼增顯因子之計算 39 4.6本基板之表面增強拉曼散射機制之探討 39 4.7基板應用於分子探針研究之結論 41 第五章 SERS活性基板應用於微量農藥檢測之研究 43 5.1 SERS活性基板應用於微量農藥檢測之研究章節架構 43 5.2 SERS活性基板於農藥樣品之檢測極限分析 43 5.2.1加保利(Carbaryl) 43 5.2.2益滅松(Phosmet) 45 5.3 SERS活性基板於水果實體之模擬檢測 47 5.3 混合農藥測試 50 5.5拉曼散射基板之baseline定義 50 5.6基板應用於農藥殘留檢測之結論 51 結論 53 未來展望 54 參考文獻 55

    [1] 翁志弘, "農藥市場發展現況及趨勢", PRIDE2016001, vol. 1, pp. 1-18, 2016.
    [2] 黃慶文、李宏萍, "農產品安全管理與宣導教育-從農藥殘留殘留檢驗談農作物安全", 農政與農情, vol. 239, pp. 6-11, 2012.
    [3] V. Dhull, A. Gahlaut, N. Dilbaghi, and V. Hooda, "Acetylcholinesterase Biosensors for Electrochemical Detection of Organophosphorus Compounds: A Review", Biochemistry Research International, vol. 2013, p. 18, 2013.
    [4] K.-H. Kim, E. Kabir, and S. A. Jahan, "Exposure to Pesticides and the Associated Human Health Effects", Science of The Total Environment, vol. 575, pp. 525-535, 2017.
    [5] 黃慶文, 涂青宇, "外銷農產品農藥殘留基準簡介", 藥毒所專題報導, vol. 117, pp. 1-11, 2015.
    [6] D.-W. Li, W.-L. Zhai, Y.-T. Li, and Y.-T. Long, "Recent Progress in Surface Enhanced Raman Spectroscopy for the Detection of Environmental Pollutants", Microchimica Acta, vol. 181, no. 1-2, pp. 23-43, 2014.
    [7] Y. Zhang, Z. Wang, L. Wu, Y. Pei, P. Chen, and Y. Cui, "Rapid Simultaneous Detection of Multi-Pesticide Residues on Apple Using Sers Technique", Analyst, vol. 139, no. 20, pp. 5148-5154, 2014.
    [8] J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, and L. Guo, "Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables", Analytical Chemistry, vol. 88, no. 4, pp. 2149-2155, 2016.
    [9] N. P. Pieczonka and R. F. Aroca, "Single Molecule Analysis by Surfaced-Enhanced Raman Scattering", Chemical Society Reviews, vol. 37, no. 5, pp. 946-954, 2008.
    [10] S. K. Ghosh and T. Pal, "Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications", Chemical Reviews, vol. 107, no. 11, pp. 4797-4862, 2007.
    [11] L. Guo, Y. Xu, A. R. Ferhan, G. Chen, and D.-H. Kim, "Oriented Gold Nanoparticle Aggregation for Colorimetric Sensors with Surprisingly High Analytical Figures of Merit", Journal of the American Chemical Society, vol. 135, no. 33, pp. 12338-12345, 2013.
    [12] Y. Huang and D.-H. Kim, "Light-Controlled Synthesis of Gold Nanoparticles Using a Rigid, Photoresponsive Surfactant", Nanoscale, vol. 4, no. 20, pp. 6312-6317, 2012.
    [13] Y. Huang, A. Dandapat, and D.-H. Kim, "Covalently Capped Seed-Mediated Growth: A Unique Approach toward Hierarchical Growth of Gold Nanocrystals", Nanoscale, vol. 6, no. 12, pp. 6478-6481, 2014.
    [14] G. Amarandei, C. O’Dwyer, A. Arshak, and D. Corcoran, "Fractal Patterning of Nanoparticles on Polymer Films and Their Sers Capabilities", ACS Applied Materials & Interfaces, vol. 5, no. 17, pp. 8655-8662, 2013.
    [15] A. Cerf, G. b. Molnár, and C. Vieu, "Novel Approach for the Assembly of Highly Efficient Sers Substrates", ACS Applied Materials & Interfaces, vol. 1, no. 11, pp. 2544-2550, 2009.
    [16] C. H. Lee, L. Tian, and S. Singamaneni, "Based Sers Swab for Rapid Trace Detection on Real-World Surfaces", ACS Applied Materials & Interfaces, vol. 2, no. 12, pp. 3429-3435, 2010.
    [17] J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, "Plasma Resonance Enhancement of Raman Scattering by Pyridine Adsorbed on Silver or Gold Sol Particles of Size Comparable to the Excitation Wavelength", Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, vol. 75, pp. 790-798, 1979.
    [18] J. F. Betz, W. Y. Wei, Y. Cheng, I. M. White, and G. W. Rubloff, "Simple Sers Substrates: Powerful, Portable, and Full of Potential", Physical Chemistry Chemical Physics, vol. 16, no. 6, pp. 2224-2239, 2014.
    [19] W. W. Yu and I. M. White, "Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper", Analytical Chemistry, vol. 82, no. 23, pp. 9626-9630, 2010.
    [20] W. Y. Wei and I. M. White, "Inkjet-Printed Paper-Based Sers Dipsticks and Swabs for Trace Chemical Detection", Analyst, vol. 138, no. 4, pp. 1020-1025, 2013.
    [21] Y.-J. Oh and K.-H. Jeong, "Optofluidic Sers Chip with Plasmonic Nanoprobes Self-Aligned Along Microfluidic Channels", Lab On a Chip, vol. 14, no. 5, pp. 865-868, 2014.
    [22] J. N. Seiber and L. A. Kleinschmidt, "Contributions of Pesticide Residue Chemistry to Improving Food and Environmental Safety: Past and Present Accomplishments and Future Challenges", Journal of Agricultural and Food Chemistry, vol. 59, no. 14, pp. 7536-7543, 2011.
    [23] A. Wilkowska and M. Biziuk, "Determination of Pesticide Residues in Food Matrices Using the Quechers Methodology", Food Chemistry, vol. 125, no. 3, pp. 803-812, 2011.
    [24] T. Yang, J. Doherty, B. Zhao, A. J. Kinchla, J. M. Clark, and L. He, "Effectiveness of Commercial and Homemade Washing Agents in Removing Pesticide Residues on and in Apples", Journal of Agricultural and Food Chemistry, vol. 65, no. 44, pp. 9744-9752, 2017.
    [25] J. F. Betz, W. W. Yu, Y. Cheng, I. M. White, and G. W. Rubloff, "Simple Sers Substrates: Powerful, Portable, and Full of Potential", Physical Chemistry Chemical Physics, 10.1039/C3CP53560F vol. 16, no. 6, pp. 2224-2239, 2014.
    [26] C. H. Lee, L. Tian, and S. Singamaneni, "Paper-Based Sers Swab for Rapid Trace Detection on Real-World Surfaces", ACS Applied Materials & Interfaces, vol. 2, no. 12, pp. 3429-3435, 2010.
    [27] A. Garcia-Leis, J. V. Garcia-Ramos, and S. Sanchez-Cortes, "Silver Nanostars with High Sers Performance", The Journal of Physical Chemistry C, vol. 117, no. 15, pp. 7791-7795, 2013.
    [28] M. Schütz, D. Steinigeweg, M. Salehi, K. Kömpe, and S. Schlücker, "Hydrophilically Stabilized Gold Nanostars as Sers Labels for Tissue Imaging of the Tumor Suppressor P63 by Immuno-Sers Microscopy", Chemical Communications, vol. 47, no. 14, pp. 4216-4218, 2011.
    [29] C. G. Khoury and T. Vo-Dinh, "Gold Nanostars for Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization", The Journal of Physical Chemistry C, vol. 112, no. 48, pp. 18849-18859, 2008.
    [30] M. V. Cañamares, J. V. Garcia-Ramos, J. D. Gómez-Varga, C. Domingo, and S. Sanchez-Cortes, "Comparative Study of the Morphology, Aggregation, Adherence to Glass, and Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles Prepared by Chemical Reduction of Ag+ Using Citrate and Hydroxylamine", Langmuir, vol. 21, no. 18, pp. 8546-8553, 2005.
    [31] S.-C. Luo, K. Sivashanmugan, J.-D. Liao, C.-K. Yao, and H.-C. Peng, "Nanofabricated Sers-Active Substrates for Single-Molecule to Virus Detection in Vitro: A Review", Biosensors and Bioelectronics, vol. 61, pp. 232-240, 2014.
    [32] S. M. Wells, S. D. Retterer, J. M. Oran, and M. J. Sepaniak, "Controllable Nanofabrication of Aggregate-Like Nanoparticle Substrates and Evaluation for Surface-Enhanced Raman Spectroscopy", Acs Nano, vol. 3, no. 12, pp. 3845-3853, 2009.
    [33] Y. Yang, Z.-Y. Li, K. Yamaguchi, M. Tanemura, Z. Huang, D. Jiang, Y. Chen, F. Zhou, and M. Nogami, "Controlled Fabrication of Silver Nanoneedles Array for Sers and Their Application in Rapid Detection of Narcotics", Nanoscale, vol. 4, no. 8, pp. 2663-2669, 2012.
    [34] H.-W. Cheng, S.-Y. Huan, H.-L. Wu, G.-L. Shen, and R.-Q. Yu, "Surface-Enhanced Raman Spectroscopic Detection of a Bacteria Biomarker Using Gold Nanoparticle Immobilized Substrates", Analytical Chemistry, vol. 81, no. 24, pp. 9902-9912, 2009.
    [35] J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X.-J. Tang, Y.-P. Zhao, and R. A. Dluhy, "The Use of Aligned Silver Nanorod Arrays Prepared by Oblique Angle Deposition as Surface Enhanced Raman Scattering Substrates", The Journal of Physical Chemistry C, vol. 112, no. 4, pp. 895-901, 2008.
    [36] A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. r. M. Reinhard, and L. Dal Negro, "Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing", Nano Letters, vol. 9, no. 11, pp. 3922-3929, 2009.
    [37] T. Qiu, W. Zhang, and P. K. Chu, "Aligned Silver Nanorod Arrays for Surface-Enhanced Raman Spectroscopy", Physica B: Condensed Matter, vol. 404, no. 8, pp. 1523-1526, 2009.
    [38] Y. S. Huh and D. Erickson, "Aptamer Based Surface Enhanced Raman Scattering Detection of Vasopressin Using Multilayer Nanotube Arrays", Biosensors and Bioelectronics, vol. 25, no. 5, pp. 1240-1243, 2010.
    [39] E. Le Ru and P. G Etchegoin, Single-Molecule Surface-Enhanced Raman Spectroscopy. 2011, pp. 65-87.
    [40] Z. Y. YUAN Wenjun, Reasons for Aggregation of Nanoparticles and Solutions. 2008.
    [41] G. Keresztury, “Raman Spectroscopy: Theory, Handbook of Vibrational Spectroscopy” (no. 1). John Wiley&Sons, 2001, p. 71.
    [42] P. R. Griffiths, “Introduction of Vibrational Spectroscopy, Handbook of Vibrational Spectroscopy” (no. 1). John Wiley&Sons, 2001, p. 33.
    [43] T. Waldmann, J. Klein, H. E. Hoster, and R. J. Behm, "Stabilization of Large Adsorbates by Rotational Entropy: A Time‐Resolved Variable‐Temperature Stm Study", ChemPhysChem, vol. 14, no. 1, pp. 162-169, 2013.
    [44] A. Nawrocka and J. Lamorska, "Determination of Food Quality by Using Spectroscopic Methods", in Advances in Agrophysical Research: InTech, 2013.
    [45] 陳志堅, "利用溶膠凝膠法製備氧化鎬奈米纖維成為表面稱顯拉曼散射成為表面增顯拉曼散射基材以檢測微量農藥成分", 成功大學材料科學科學與工程學系學位論文, pp. 1-87, 2017.
    [46] H. J. Bowley, D. L. Gerrard, J. D. Louden, and G. Turrell, Practical Raman Spectroscopy. Springer Science & Business Media, 2012.
    [47] G. Keresztury, "Raman Spectroscopy: Theory, Handbook of Vibrational Spectroscopy, Edited by Jm Chalmers and Pr Griffith", ed: John Wiley & Sons, New York, 2002.
    [48] 李冠卿, 表面強化拉曼散射, 物理雙月刊, 1983
    [49] 謝雲生, 雷射拉曼光譜簡介, 物理雙月刊, 1985
    [50] M. Moskovits, "Surface-Enhanced Spectroscopy", Reviews of Modern Physics, vol. 57, no. 3, p. 783, 1985.
    [51] R. J. Brown and M. J. Milton, "Nanostructures and Nanostructured Substrates for Surface—Enhanced Raman Scattering (Sers)", Journal of Raman Spectroscopy, vol. 39, no. 10, pp. 1313-1326, 2008.
    [52] Q. Ye, J. Fang, and L. Sun, "Surface-Enhanced Raman Scattering from Functionalized Self-Assembled Monolayers. 2. Distance Dependence of Enhanced Raman Scattering from an Azobenzene Terminal Group", The Journal of Physical Chemistry B, vol. 101, no. 41, pp. 8221-8224, 1997.
    [53] Y.-C. Liu and R. McCreery, "Raman Spectroscopic Determination of the Structure and Orientation of Organic Monolayers Chemisorbed on Carbon Electrode Surfaces", Analytical Chemistry, vol. 69, no. 11, pp. 2091-2097, 1997.
    [54] R. L. McCreery, Raman Spectroscopy for Chemical Analysis. John Wiley & Sons, 2005.
    [55] A. Otto, "Surface-Enhanced Raman Scattering:“Classical” and “Chemical” Origins", In Light Scattering In Solids Iv: Springer, 1984, pp. 289-418.
    [56] R. L. McCreery, "Magnitude of Raman Scattering", Raman Spectroscopy for Chemical Analysis, pp. 15-33, 2005.
    [57] B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, "Large‐Area Silver‐Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface‐Enhanced Raman Spectroscopy", Advanced Functional Materials, vol. 18, no. 16, pp. 2348-2355, 2008.
    [58] X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, "Multifunctional Au‐Coated Tio2 Nanotube Arrays as Recyclable Sers Substrates for Multifold Organic Pollutants Detection", Advanced Functional Materials, vol. 20, no. 17, pp. 2815-2824, 2010.
    [59] E. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, "Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study", The Journal of Physical Chemistry C, vol. 111, no. 37, pp. 13794-13803, 2007.
    [60] Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, "Localized and Propagating Surface Plasmon Co-Enhanced Raman Spectroscopy Based on Evanescent Field Excitation", Chemical Communications, vol. 47, no. 13, pp. 3784-3786, 2011.
    [61] C. Kranz and B. Mizaikoff, "Microscopic Techniques for the Characterization of Gold Nanoparticles", in Comprehensive Analytical Chemistry, vol. 66: Elsevier, 2014, pp. 257-299.
    [62] A. Camposeo, D. Spadaro, D. Magrì, M. Moffa, P. G. Gucciardi, L. Persano, O. M. Maragò, and D. Pisignano, "Surface-Enhanced Raman Spectroscopy in 3d Electrospun Nanofiber Mats Coated with Gold Nanorods", Analytical and Bioanalytical Chemistry, vol. 408, no. 5, pp. 1357-1364, 2016.
    [63] C.-W. Chang, J.-D. Liao, H.-C. Chang, L.-K. Lin, Y.-Y. Lin, and C.-C. Weng, "Fabrication of Nano-Indented Cavities on Au for the Detection of Chemically-Adsorbed Dtnb Molecular Probes through Sers Effect", Journal of Colloid and Interface Science, vol. 358, no. 2, pp. 384-391, 2011.
    [64] K. Sivashanmugan, H. Lee, C.-H. Syu, B. H.-C. Liu, and J.-D. Liao, "Nanoplasmonic Au/Ag/Au Nanorod Arrays as Sers-Active Substrate for the Detection of Pesticides Residue", Journal of the Taiwan Institute of Chemical Engineers, vol. 75, pp. 287-291, 2017.
    [65] H. Wei and H. Xu, "Hot Spots in Different Metal Nanostructures for Plasmon-Enhanced Raman Spectroscopy", Nanoscale, vol. 5, no. 22, pp. 10794-10805, 2013.

    下載圖示 校內:2023-08-28公開
    校外:2023-08-28公開
    QR CODE