簡易檢索 / 詳目顯示

研究生: 許嘉容
Hsu, Chia-Jung
論文名稱: 剛版間球殼泡沫材料單軸抗壓應力應變曲線之數值分析
Numerical analysis on the uniaxial compression stress-strain curves of hollow sphere foams between rigid plates
指導教授: 黃忠信
Huang, Jong-Shin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 100
中文關鍵詞: 雙尺寸球殼泡沫材料相對密度應力應變曲線楊氏模數降伏強度
外文關鍵詞: Dual-Sized Hollow Sphere Foams, Relative Density, Stress-Strain Curve, Yield Strength
相關次數: 點閱:219下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 泡沫材料是一種具高孔隙率、質量輕、隔音隔熱優良、吸能性佳之材料,至今已廣泛應用於各輕質結構工程中,然而,由於製造技術之限制,使得商業用泡沫材料微結構存在多種缺陷,進而降低其工程性質。本研究為改善傳統連通型與封閉型泡沫材料,於製作過程中不易控制其微結構缺陷,故採用球殼規則性堆疊的微結構排列方式,所製成球殼泡沫材料物理與工程性能可以更準確加以預測。本文將探討於單尺寸球殼與雙尺寸球殼兩種不同堆疊情況下,比較其於相同體積密度時,受單軸抗壓作用下其應力應變曲線的差異。首先,選用有限元素法套裝軟體ABAQUS進行數值分析,考慮剛版間球殼泡沫材料承受一單軸壓力作用,於剛版上施加一位移,數值分析求得其所承受應力之變化,進而獲得其應力應變曲線。數值分析結果發現,於相同相對密度條件下,採用雙尺寸球殼所製成泡沫材料之楊氏模數、降伏強度、應變能等力學性質,皆較單尺寸球殼所製成泡沫材料者提升許多。

    Lightweight foam is a special kind of material with high porosity, good thermal insulation and excellent energy absorption. Foam has been widely used in lightweight structural engineering. However, due to the limitation in manufacturing, there are a variety of microstructural defects in commercially-available foams, thus reducing their engineering properties. In practice, hollow sphere foams are employed to replace the traditional foams with some microstructural defects resulting from production process. Because of the regularly-stacking microstructure of hollow sphere foams, their physical and engineering properties can be predicted more accurately. In the study, the difference in the uniaxial compressive stress-strain curves between the single-sized and dual-sized hollow sphere foams with the same relative density is discussed in detail. The commercially available finite element software ABAQUS is utilized here to conduct a series of numerical analyses. The stress-strain curves of hollow sphere foams between two rigid plates under uniaxial compression are obtained numerically. In running numerical analysis, a prescribed displacement is imposed on the rigid plates, the corresponding stresses on hollow sphere foams are calculated numerically. Furthermore, the resulting stress-strain curves of hollow sphere foams are presented and then compared to evaluate the effects of relative density and cell geometry. Numerical results show that the Young's modulus, yield strength and strain energy of dual-sized hollow sphere foams are consistently larger than those of single-sized hollow sphere foams with the same relative density.

    目錄 摘要 I EXTENDED ABSTRACT II 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3研究內容與組織 3 第二章 文獻回顧與整理 7 2.1泡沫材料變形機制 7 2.2泡沫材料力學性質 8 2.3泡沫材料微結構缺陷 13 2.4球殼泡沫材料 14 第三章 數值模型與分析方法 24 3.1 模型幾何結構說明及相對密度計算 24 3.1.1單尺寸球殼堆疊泡沫材料 25 3.1.2雙尺寸球殼堆疊泡沫材料 29 3.2數值分析模型建立方法、參數設定、分析步驟說明 34 3.2.1數值分析模型建立 34 3.2.2材料性質 37 3.2.3有限元素種類之選擇 38 3.2.4網格切割數量之收斂 40 3.2.5邊界條件設定 40 3.2.6模型堆疊數量之收斂 42 3.2.7分析方法 42 第四章 數值分析結果與討論 60 4.1單尺寸球殼堆疊泡沫材料之應力應變曲線 60 4.1.1應力應變曲線 60 4.1.2球殼厚度與連接處尺寸對楊氏模數之影響 61 4.1.3球殼厚度與連接處尺寸對降伏強度之影響 64 4.1.4球殼厚度與連接處尺寸對應變能之影響 65 4.1.5小結 66 4.2雙尺寸球殼堆疊泡沫材料之應力應變曲線 67 4.2.1堆疊方式嵌入小球之應力應變曲線 67 4.2.2堆疊方式嵌入小球對楊氏模數之影響 68 4.2.3堆疊方式嵌入小球對降伏強度之影響 70 4.2.4堆疊方式嵌入小球對應變能之影響 72 4.2.5小結 72 第五章 結論與建議 95 5.1結論 95 5.2建議 97 參考文獻 98

    參考文獻
    [1]Sanders WS, Gibson LJ. “ Mechanics of hollow sphere foams,” Materials Science and Engineering: A, Vol. 347, pp. 70-85 (2003)
    [2]蔡依昕, “雙尺寸球殼堆疊泡沫材料之彈性係數,”國立成功大學土木工程研究所碩士論文(2015)
    [3]尹瑋婷, “球殼泡沫材料單軸抗壓強度之數值分析,”國立成功大學土木工程研究所碩士論文(2016)
    [4]材智匯“ 21世紀最具潛力新材料之泡沫鋁—用孔改變世界!”新材全球網(2016)
    [5]Li ZW, Wang HW, Wei ZJ, Wang YG. “Fabrication and compressive properties of K405 alloy hollow sphere foams,” Rare Metal Mater. Eng. 37(1), 135-138 (2008)
    [6]Gibson LJ, Ashby MF, Cellular Solids: Structure and properties (2nd ed.), Cambridge University Press (1997)
    [7]Simone AE, Gibson LJ. “Effects of solid distribution on the stiffness and strength of metallic foam,” Acta mater. Vol. 46, No. 6, pp. 2139-2150 (1998)
    [8]Kang YA, Zhang JY, Tan TC, “Effect of relative density on the compressive property and energy absorption capacity of aluminum foams,” Journal of Functional Materials: Vol. 37 pp.247-254(2006)
    [9]McCullough KYG, Fleck NA, Ashby MF. “Uniaxial Stress-Strain Behavior of Aluminum Alloy Foams,” Acta Materialia. Vol.47, No. 8, pp. 2323-2330(1999)
    [10]Thornton PH, Magee CL. “The Deformation of Aluminum Foams” Metallurgical Transactions A: Vol. 6A, pp.1975 -1253 (1975)
    [11]Yu CJ, Ban hart J. “Mechanical Properties of Metallic Foams,” Fraunhofer Resource Center (1998)
    [12]何博文,”泡沫鋁之三軸力學行為,”國立成功大學土木工程研究所碩士論文(2001)
    [13]楊美怡,”微構件剖面對蜂巢材料雙軸抗壓行為之影響,”國立成功大學土木工程研究所碩士論文(2001)
    [14]Simone AE, Gibson LJ. “Aluminum foams produced by liquid-state processes,” Acta mater. Vol.46, No. 9, pp. 3109-3123 (1998)
    [15]Ramezani Z, Ripin ZM. “Combined experimental and numerical analysis of bulge test at high strain rates using split Hopkinson pressure bar apparatus,” Journal of Materials Processing Technology: Vol. 210 pp.1061-1069 (2010)
    [16]士盟瑞其CAE團隊,“最新Abaqus實務入門,”全華圖書(2013)
    [17]Gasser S, Paun F, Cayzeele A, Brechet Y. “Uniaxial tensile elastic properties of a regular stacking of brazed hollow spheres,” Scripta Materialia 48, pp. 1617-1623 (2003)
    [18]Fiedler T, Ochsner A. “On the anisotropy of adhesively bonded metallic hollow sphere structures,” Science Direct: Scripta Materialia 58, pp.695-698 (2008)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE