簡易檢索 / 詳目顯示

研究生: 蔡孟宏
Tsai, Meng-Hung
論文名稱: 以奈米球微影製程製備圖案化透明導電玻璃
Patterning of TCO Film Using Nanosphere Lithography Technique
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 101
中文關鍵詞: 球微影透明導電膜
外文關鍵詞: nanosphere lithography, TCO
相關次數: 點閱:129下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透明導電玻璃為太陽能電池中重要元件之一,在薄膜太陽能電池μ-Si:H、a-Si:H中,由於吸收層非常薄,致使光在入射進入吸收層時,行徑路線過短,不易被吸收層充分利用,所以必須在透明導電層上製做一粗糙化結構,使光在通過此界面時產生散射,延長光在吸收層之行進路徑,使光能在吸收層能被較充分利用,即所謂光陷化,評估光散射程度之光學指標稱之為霧度值,霧度值愈高代表光通過界面有較大程度之散射。
    有別於傳統方法在透明導電膜表面製做粗糙化結構,本研究目的為利用奈米氧化矽微球微影製程在玻璃基材上製備規則結構。本研究將探討奈米二氧化矽微球製程參數對粒徑大小之影響,以及奈米球體之單層自組裝參數。並以球微影製程輔以濕式蝕刻製備具有規則化結構之玻璃基材,並探討圖案尺寸對玻璃基材光學性質之影響。最後濺鍍透明導電薄膜於玻璃基材,完成具規則結構之透明導電玻璃,將實驗測得之光學性質與光學模擬結果比較,探討圖案尺寸對於光散射行為之影響。
    實驗結果顯示,奈米氧化矽微球粒徑大小隨著TEOS、NH¬4OH的含量增加,粒徑大小有隨之增大之趨勢。當H2O的含量增加,起初奈米二氧化矽微球粒徑隨H2O增加,粒徑變大,當H2O的含量過多時,奈米二氧化矽微球粒徑反而變小。粒徑大小的變化原因為反應物濃度改變,造成奈米球體成核數目不同影響球體粒徑大小。另一方面,本研究以400 nm二氧化矽微球當作核點,透過連續添加TEOS成功使奈米球體成長為大粒徑球體,使球體粒徑分別成長為694 nm、762 nm、981 nm。將製備好之球體分散於去離子水中,並加入分散劑Triton x100,以旋轉塗佈法使球體自組裝排列,能使粒徑400 nm、762 nm、981 nm之球體排列成單層規則結構。透過單層結構之球以球微影製程,成功製備規則圖案之玻璃基材,其圖案尺寸分別為300nm、600nm、900nm,具規則結構之玻璃基材有效提升霧度值,其中以圖案尺寸900nm之玻璃基材有最大霧度值7.27%。濺鍍透明導電薄膜於具有規則圖案之玻璃基材,得到具有規則結構之透明導電玻璃,圖案尺寸如同玻璃基材,隨著透明導電玻璃圖案尺寸愈大,霧度值會愈大,其中以圖案尺寸900nm之圖案具有最大霧度值11.25 %。此外,藉由濕式蝕刻時間不同改變同案深度,圖案之深度從60nm到90nm,隨著圖案深度增加,霧度值也會增加,其中以具有橫向尺寸900 nm,深度90 nm之圖案有最大霧度值14.51 %。將實驗結果得到之霧度值與光學模擬所得之數值比較,發現實驗霧度值與光學模擬結果吻合,而其圖案尺寸變化與霧度值之影響,最終可歸於表面粗糙度之影響,表面粗糙度愈高之圖案能有較高之霧度值表現。

    Transparent Conductive Oxide (TCO) is one of the important components of the solar cells. In the thin film solar cells, the light path is limited because of the main absotption layer of a-Si:H or μ-Si:H is quite thin, when the light go into the absorption layer and the light cannot be used efficiently. Thus, to prepared a TCO with enlarged surface roughness is necessary, it can enhance light scattering and increase the light path so that the light can be used totally, which is so-called light trapping effect. And the haze value is to assess the degree of light scattering, the higher the haze value, the higher degree of light scattering when the light go through the surface.
    Differ from traditional TCO film with texture on surface, in this study, the SiO2 nanosphere lithography technique was used to prepare the rules pattern on the glass substrate. This study will discuss the effect of the preparation parameters of SiO2 nanosphere on the particle size, and the parameters of nanosphere self-assembly into monolayer respectively. Pattern the glass substrate with rule pattern using nanosphere lithography process, and then to discuss the effect of the pattern size on the optical properties of the glass substrate. Also, sputtering TCO on the glass substrate with rules patterns and form the transparent conductive glass with rules patterns. And then, compare the measurement of optical properties with optical simulation to discuss the influence of pattern size on the light scattering.
    The experimental results show that with the increasing content of TEOS、NH¬4OH, the particle size increased along with the trend. The particle size of SiO2 nanosphere increased with the increasing H2O content, while the particle size of SiO2 nanosphere decreased when the content of H2O is too much. Particle size changes due to the changes in the concentration of reactants, resulting in nanosphere into different number of nuclear. In this study, using the 400 nm SiO2 nanosphere as a nucleation point, through continuously adding TEOS can make the nanosphere grow into a larger particle size, and grow to 694 nm, 762 nm, 981 nm. Putting the prepared nanosphere which particle size are 400nm、762nm、981nm into DI water with dispersant(Tirton x100) respectively, and the nanosphere can arrange into monolayer by spin-coating successfully. The glass substrate with rules structure was obtained which the pattern size are 300nm、600nm、900nm respectively using nanosphere lithography process. And then sputtering TCO on the glass substrate with rules structure and to get the transparent conductive glass with rules structure, the lateral size is same as the glass substrate. Transparent conductive glass pattern with larger pattern size, the greater the haze value was obtained, of which the pattern size of 900nm of the pattern has a maximum haze value of 11.25%. The depth of pattern will change with the time of the wet etching. With the greater depth of pattern, the haze value is relative high, of which the lateral size of 900 nm and the pattern depth of 90 nm has a maximum haze value of 14.51%. In addition, the haze value obtained from the experimental results is consistent with the value obtained from the optical simulation. The change of the haze value can be attributed to surface roughness, the higher the surface roughness of the patterns can have a high degree of value of the performance of the haze value.

    總目錄 摘要 I Abstract II 總目錄 VII 表目錄 XI 圖目錄 XII 第一章 前言與動機 1 1-1 前言 1 1-2 研究動機與目的 4 第二章 理論基礎與文獻回顧 8 2-1 溶膠-凝膠法機制 8 2-2 奈米二氧化矽球合成理論 9 2-3 奈米球體自組裝原理 11 2-4 氧化錫的基本性質 17 2-5 氧化物透明導電薄膜的光學原理 17 2-6 透明導電膜於太陽能電池上的應用 19 2-7 太陽能電池的光陷化效應 20 第三章 實驗方法與步驟 22 3-1 實驗流程 22 3-2 奈米二氧化矽微球製備 23 3-3 濺鍍系統 25 3-4 原料選擇 27 3-5 鍍膜參數及步驟 27 3-6 分析及測試 28 3-6-1 粒徑分析 28 3-6-2 表面型態分析 28 3-6-3 光學性質分析 29 第四章 結果與討論 31 4-1 二氧化矽奈米球製備 31 4-1-1 TEOS濃度對合成奈米二氧化矽微球粒徑大小之影響 31 4-1-2 H2O 濃度對合成奈米二氧化矽微球粒徑大小之影響 36 4-1-3 NH4OH含量對合成奈米二氧化矽微球粒徑大小之影響 39 4-1-4 連續添加TEOS成長奈米氧化矽球 42 4-2 奈米二氧化矽球體之單層自組裝排列 48 4-2-1 自然滴製法(Drop-coating)自組裝排列 48 4-2-2 旋轉塗佈法(Sping-coatin)自組裝排列 52 4-3 二氧錫輔助蝕刻製備圖案化玻璃基材 59 4-3-1 以奈米球微影製程製備氧化錫蝕刻阻擋層 59 4-3-2 以氧化錫阻擋層輔助蝕刻玻璃基材 69 4-4 圖案化透明導電玻璃 76 4-4-1 透明導電玻璃圖案橫向尺寸對霧度值之影響 76 4-4-2 透明導電玻璃圖案深度對霧度值之影響 83 4-4-3 光學模型模擬 89 第五章 結論 95 參考文獻 98

    1. J. Krč, M. Zeman, O. Kluth, F. Smole, M. Topič (2003). "Analysis of Light Scattering in Amorphous Si:H Solar Cells by a One-Dimensional Semi-coherent Optical Model" Progress In Photovoltatics: Research and Applications 11: 15-26.

    2. W. Beyer, J. Hüpkes, H. Stiebig (2007). "Transparent conducting oxide films for thin film silicon photovoltaics" Thin Solid Films 516:147-154.

    3. J. Krč, M. Zeman, O. Kluth, F. Smole, M. Topič (2003). "Effect of surface roughness of ZnO:Al films on light scattering inhydrogenated amorphous silicon solar cells" Thin Solid Films 426: 296-304.

    4. C. Haase, H. Stiebig, (2006) "Optical Properties of Thin-film Silicon Solar Cells with Grating Couplers" Prog. Photovolt: Res. Appl. 14:629-641.

    5. 余樹楨(1987), 晶體之結構與性質, 渤海堂, p281.

    6. I. Hamberg, C. G. Granqvist, (1984) "Band-gap widening in heavily Sn-doped In2O3" Phys. Rev. 30:3240-3249.

    7. Z. L. Pei, C. Sun, et al. (2001). "Optical and electrical properties of direct-current magnetron sputteredZnO:Al films." JOURNAL OF APPLIED PHYSICS 90: 3432-3437.

    8. J. Krč, M. Zmen, F. Smole, M. Topič, (2002). "Optical modeling of a-Si:H solar cells deposited on textured glass/SnO2 substrates." JOURNAL OF APPLIED PHYSICS 92: 749-756.

    9. F. R. Sally-anne, L. John, P. L. Christopher (2002). "Optical modeling of finely textured amorphous silicon solar cells." Solar Energy Materials & Solar Cells 71: 399-405.

    10. T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth,
    B. Rech, H. Stiebig, H. Wagner (2002). "Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration." Solar Energy Materials & Solar Cells 74: 469-478.

    11. J. Müller, B. Rech, J. Springer, M. Vanecek (2004). "TCO and light trapping in silicon thin film solar cells." Solar Energy 77: 917-930.

    12. H.C. Wang, C.Y. Wu (2006). "Analysis of Parameters and Interaction between Parameters in Preparation of Uniform Silicon Dioxide Nanoparticles Using Response Surface Methodology." Ind. Eng. Chem. Res. 45: 8043-8048.

    13. J.L. Look, G.H. Bogush, C.F. Zukoski (1990). "Colloidal Interactions during the Precipitation of Uniform Submicrometre Particles." Faraday Discuss. Chem. Soc 90: 345-357.

    14. Z. Li, J.G. (2003). "Preparation and Formation Mechanisms of Monodispersed Silicon Dioxide Spherical Particles." Ziran Kexueban 61: 562-566.

    15. W. Stober, A. Fink (1968). "Controlled Growth of Monodisperse Silica Sphere in the Micron Size Range." Journal of Colloid and Interface Science 26: 62-69.

    16. B. Y. Xia, B. Gates (2000). "Monodispersed Colloidal Spheres:
    Old Materials with New Applications." Advanced Materials 12: 693-713.

    17. J. Esquena, R. Pons (1997). "Preparation of monodisperse silica particles in emulsion media." Colloids and Surface A 575-586.

    18. J.H. Zhang, P. Zhan (2002). "Preparation of monodisperse silica particles with controllable size and shape." J. Mater. Res. 18: 649-653.

    19. 駱榮富,逢甲大學 (2005)."單分散微球之電泳自組裝技術製作三維反蛋白石結構光子晶體" 國科會報告NSC94-2216-E-035-021-.
    20. K. Nagayama, (1996). "Two-dimensional self-assembly of colloids in thin liquid films." COLLOID AND INTERFACE A 109: 363-374.

    21. E.Adachi, A. S. Dimitrov (1995). "Stripe Patterns Formed on a Glass Surface during Droplet Evaporation." Langmuir 11: 1057-1060.

    22. K. Nozawa, H. Gailhanou (2005). "Smart Control of Monodisperse Stober Silica Particles:Effect of Reactant Addition Rate on Growth Process." Langmuir 21: 1516-1523.

    23. S.L. Chen, P. Dong (1997). "The Size Dependence of Growth Rate of MonodisperseSilica Particles from Tetraalkoxysilane." COLLOID AND INTERFACE SCIENCE 189: 268-272.

    24. P.Hanarp, D. S. Sutherland (2003). "Control of nanoparticle film structure for colloidal lithography." Colloids and Surface A 214: 23-36.

    25. D.G. Choi, S. Kim (2004) "Nanopatterned Magnetic Metal via
    Colloidal Lithography with Reactive Ion Etching." Chem. Mater. 16: 4208-4211.

    26. C. Haginoya, M. Ishibashi (1997). "Nanostructure array fabrication with
    a size-controllable natural lithography." Appl. Phys. Lett. 71: 2934-2936.

    27. 楊明輝, (2006) “透明導電膜” 藝軒出版社p.15。

    28. S.S. Hegedus, R. Kaplan (2002) "Analysis of Quantum Efficiency and Optical Enhancement in Amorphous Si p-i-n Solar Cells" Prog. Photovolt: Res. Appl. 10:257-269.

    29. J. Krč, M. Zmen, O. kluth (2003) "LIGHT SCATTERING PROPERIES OF SnO2 AND ZnO SURFACE-TEXTURED SUBSTRTES" 3rd World Conference on Photovoltaic Energy Conversion.

    30. J. Krč, F. Smole (2003) "Potential of Light Trapping in Microcrystalline Silicon Solar Cells With Textured Substrates" Prog. Photovolt: Res. Appl. 11:429-436.

    31. H. P. Pillai, J. Krč, M. Zmen (2001) "Optical Modeling of a-Si:H Thin Film Solar Cells with Rough Interfaces", Proceedings of SAFE 2001, Veldhoven, The Netherlands, 159.

    32. M. N. Rahaman (1995) "Science of Collidal Processing in Ceramic Processing and Sintering", Ed. By M. N. Rahaman, Marcel Dekker, New York, 146.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE