| 研究生: |
鍾曜顯 Zhong, Yao-Xian |
|---|---|
| 論文名稱: |
能源消費效率、經濟發展效率和溫室氣體治理效率分析-以歐盟為例 Analysis of Energy Consumption Efficiency, Economic Development Efficiency, and Greenhouse Gas Management Efficiency - A Case Study of the European Union |
| 指導教授: |
林泰宇
Lin, Tai-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 溫室氣體排放效率 、溫室氣體治理 、能源消費 、空氣汙染減排量 |
| 外文關鍵詞: | Greenhouse Gas Emission Efficiency, Greenhouse Gas Management, Energy Consumption, Air Pollution Reduction |
| 相關次數: | 點閱:36 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過多溫室氣體的排放帶來了許多災害,世界各國針對溫室氣體排放議題都嚴陣以待,不僅簽署了各種條約,更是通過了相關法規,在迫切需要進行改變的環境下,不管是使用再生能源或是進行相關技術創新等方式,都讓政府投入了一定的心力。而歐盟議會曾以壓倒性的票數通過巴黎協定,並提出歐洲氣候法等法案來達成氣候中和等目標,可見歐洲國家在促進永續上不餘遺力,然而各國在溫室氣體治理的績效是為何是本文關注的重點,因此本研究以2015年至2020年間的27個歐洲國家為研究對象,探討其在經濟發展和溫室氣體治理的效率。本研究最大的貢獻為透過可以處理負值的模型為歐盟各國在溫室氣體投入的經費進行了評估,觀察期投入是否具備治理的績效。研究揭示了其中14個國家的總效率高於平均水平,顯示了這些國家在經濟發展、溫室氣體排放及治理效率方面的優秀表現。特別是比利時、保加利亞、愛沙尼亞等國在六年間始終保持高效率,成為其他國家的學習榜樣。此外,研究還指出,雖然部分國家如奧地利、比利時的表現在某些年份波動較大,但從長遠來看,大部分國家的溫室氣體治理效率呈現上升趨勢。
在生產階段,各國能源消費和勞動力效率均顯示出逐年改善的趨勢。反映出各國在溫室氣體治理方面的顯著努力及投入。然而,效率表現在奧地利、比利時等國之間仍存在顯著差異,顯示出進一步優化空間。
政府在環境保護支出的效率顯著提高,尤其在減排效率上,顯示歐洲各國在減少溫室氣體排放方面取得了重大進步。這對於應對全球氣候變化及實現國際氣候協定目標具有關鍵意義。總體來看,歐洲國家在氣候治理方面的持續努力,有效地提高了治理階段的整體效率,為氣候變化挑戰提供了積極回應。
The excessive emission of greenhouse gases has led to numerous disasters, and countries around the world are taking serious precautions against greenhouse gas emissions. Not only have various treaties been signed, but relevant regulations have also been passed. In an environment that urgently needs change, governments are investing considerable effort, whether by using renewable energy or through technological innovation. This study focuses on 27 European countries from 2015 to 2020, examining their efficiency in economic development and greenhouse gas management. The major contribution of this research is the evaluation of the funds invested in greenhouse gas reduction by the EU countries using a model that can handle negative values, observing whether these investments have governance performance. The study reveals that 14 countries have an overall efficiency above the average level, demonstrating their excellent performance in economic development, greenhouse gas emissions, and management efficiency. Particularly, Belgium, Bulgaria, and Estonia have consistently maintained high efficiency over six years, serving as role models for other countries. Moreover, the study points out that although some countries like Austria and Belgium have shown significant fluctuations in certain years, most countries' greenhouse gas management efficiency has shown an upward trend over time.
During the production phase, the energy consumption and labor efficiency of the countries have shown a yearly improvement trend, reflecting the significant efforts and investments in greenhouse gas management. However, there are still significant differences in efficiency performance between countries like Austria and Belgium, indicating room for further optimization. The efficiency of government spending on environmental protection, especially in emission reduction efficiency, has significantly increased, showing that European countries have made substantial progress in reducing greenhouse gas emissions. This is crucial for addressing global climate change and achieving the goals of international climate agreements. Overall, the sustained efforts of European countries in climate governance have effectively improved the overall efficiency of the governance phase, providing a positive response to the challenges of climate change.
Abad-Segura, E., Fuente, A. B. d. l., González-Zamar, M.-D., & Belmonte-Ureña, L. J.(2020). Effects of circular economy policies on the environment and sustainable growth: Worldwide research. Sustainability, 12(14), 5792.
Bampatsou, C., & Halkos, G. (2019). Economic growth, efficiency and environmental for the G7 countries. Energy Policy, 130, 355-360.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
Bennetzen, E. H., Smith, P., & Porter, J. R. (2016). Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Global Environmental Change, 37, 43-55.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and Undesirable Outputs: A Directional Distance Function Approach. Journal of Environmental Management, 51(3), 229-240.
Cowart, R. (2008). Carbon caps and efficiency resources: how climate legislation can mobilize efficiency and lower the cost of greenhouse gas emission reduction. Vt. L. Rev., 33, 201.
Darwin, R. (2004). Effects of greenhouse gas emissions on world agriculture, food consumption, and economic welfare. Climatic Change, 66(1), 191-238. Fleming, P., & Webber, P. (2004). Local and regional greenhouse gas management.Energy Policy, 32(6), 761-771.
Franks, J. R., & Hadingham, B. (2012). Reducing greenhouse gas emissions from agriculture: avoiding trivial solutions to a global problem. Land Use Policy, 29(4), 727-736.
Friel, S., Dangour, A. D., Garnett, T., Lock, K., Chalabi, Z., Roberts, I., Butler, A., Butler, C. D., Waage, J., & McMichael, A. J. (2009). Public health benefits of strategies to reduce greenhouse-gas emissions: food and agriculture. The Lancet, 374(9706), 2016-2025.
Gillingham, K., & Stock, J. H. (2018). The cost of reducing greenhouse gas emissions. Journal of Economic Perspectives, 32(4), 53-72.
Gołasa, P., Wysokiński, M., Bieńkowska-Gołasa, W., Gradziuk, P., Golonko, M., Gradziuk, B., Siedlecka, A., & Gromada, A. (2021). Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used. Energies, 14(13), 3784.
Halkos, G. E., & Polemis, M. L. (2018). The impact of economic growth on environmental efficiency of the electricity sector: A hybrid window DEA methodology for the USA. Journal of Environmental Management, 211, 334-346.
Jawjit, W., Kroeze, C., & Rattanapan, S. (2010). Greenhouse gas emissions from rubber industry in Thailand. Journal of Cleaner Production, 18(5), 403-411.
Johnson, J. M. F., Franzluebbers, A. J., Weyers, S. L., & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150(1), 107-124.
Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2013). Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production. Energy, 58, 588-593.
Kim, S. J., Kim, H., & Atukeren, E. (2023). Effects of board independence on greenhouse gas emissions and financial consequences: Evidence from South Korea. Environments, 10(3), 56.
Koopmans, T. i. C. (1957). Three Essays on the State of Economic Science. New York: McGraw-Hil1 Book Company. In: Inc.
Kutlu, L. (2020). Greenhouse gas emission efficiencies of world countries. International Journal of Environmental Research and Public Health, 17(23), 8771.
Laborde, D., Mamun, A., Martin, W., Piñeiro, V., & Vos, R. (2021). Agricultural subsidies and global greenhouse gas emissions. Nature Communications, 12(1), 2601.
Lin, R., & Chen, Z. (2015). Super-efficiency measurement under variable return to scale: an approach based on a new directional distance function. Journal of the Operational Research Society, 66(9), 1506-1510.
Lin, T.-Y., Chiu, Y.-H., Lin, Y.-N., Chang, T.-H., & Lin, P.-Y. (2023). Greenhouse gas emission indicators, energy consumption efficiency, and optimal carbon emission allowance allocation of the EU countries in 2030. Gas Science and Engineering, 110, 204902.
Liu, D., Guo, X., & Xiao, B. (2019). What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Science of the Total Environment, 661, 750-766.
Moutinho, V., Madaleno, M., & Robaina, M. (2017). The economic and environmental efficiency assessment in EU cross-country: Evidence from DEA and quantile regression approach. Ecological Indicators, 78, 85-97.
Nabavi-Pelesaraei, A., & Amid, S. (2014). Reduction of greenhouse gas emissions of eggplant production by energy optimization using DEA approach. Elixir Energy Environ, 69, 23696-23701.
Panchasara, H., Samrat, N. H., & Islam, N. (2021). Greenhouse gas emissions trends and mitigation measures in Australian agriculture sector—a review. Agriculture, 11(2), 85.
Payandeh, Z., Jahanbakhshi, A., Mesri-Gundoshmian, T., & Clark, S. (2021). Improving energy efficiency of barley production using joint data envelopment analysis (DEA) and life cycle assessment (LCA): Evaluation of greenhouse gas emissions and optimization approach. Sustainability, 13(11), 6082.
Pishgar-Komleh, S. H., Zylowski, T., Rozakis, S., & Kozyra, J. (2020). Efficiency under different methods for incorporating undesirable outputs in an LCA+ DEA framework: A case study of winter wheat production in Poland. Journal of Environmental Management, 260, 110138.
Portela, M. C. A. S., Thanassoulis, E., & Simpson, G. (2004). Negative data in DEA: a directional distance approach applied to bank branches. Journal of the Operational Research Society, 55(10), 1111-1121.
Schneider, U. A., & Smith, P. (2009). Energy intensities and greenhouse gas emission mitigation in global agriculture. Energy Efficiency, 2, 195-206.
Sharma, S., & Majumdar, K. (2021). Efficiency of rice production and CO2 emissions: A study of selected Asian countries using DDF and SBM-DEA. Journal of Environmental Planning and Management, 64(12), 2133-2153.
Shen, Z., Balezentis, T., & Streimikis, J. (2022). Capacity utilization and energy-related GHG emission in the European agriculture: A data envelopment analysis approach. Journal of Environmental Management, 318, 115517.
Sun, Y.-Y. (2016). Decomposition of tourism greenhouse gas emissions: Revealing the dynamics between tourism economic growth, technological efficiency, and carbon emissions. Tourism Management, 55, 326-336.
Tone, K., & Tsutsui, M. (2014). Dynamic DEA with network structure: A slacks-based measure approach. Omega, 42(1), 124-131.
Talaei, A., Gemechu, E., & Kumar, A. (2020). Key factors affecting greenhouse gas emissions in the Canadian industrial sector: A decomposition analysis. Journal of Cleaner Production, 246, 119026.
Tongwane, M. I., & Moel etsi, M. E. (2018). A review of greenhouse gas emissions from the agriculture sector in Africa. Agricultural Systems, 166, 124-134.
Valadkhani, A., Roshdi, I., & Smyth, R. (2016). A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters. Energy Economics, 54, 363-375.
Walheer, B. (2018). Economic growth and greenhouse gases in Europe: A non-radial multi-sector nonparametric production-frontier analysis. Energy Economics, 74,1-2.
Wegener, M., & Amin, G. R. (2019). Minimizing greenhouse gas emissions using inverse DEA with an application in oil and gas. Expert Systems with Applications, 122, 369-375.
Zhang, J., Patwary, A. K., Sun, H., Raza, M., Taghizadeh-Hesary, F., & Iram, R. (2021). Measuring energy and environmental efficiency interactions towards CO2 missions reduction without slowing economic growth in central and westernEurope. Journal of Environmental Management, 279, 111704.