| 研究生: |
劉威廷 Liu, Wei-Ting |
|---|---|
| 論文名稱: |
以分子動力學模擬法探討表面效應對金屬奈米線機械性質之影響 The Influence of Surface Effect on Mechanical Properties of Metal Nanowire through Molecular Dynamics Simulation |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 奈米線 、分子動力學模擬 、機械性質 、尺寸效應 、拉伸 、壓縮 、金屬玻璃(非晶態金屬) |
| 外文關鍵詞: | nanowire, molecular dynamics simulation, mechanical properties, size effect, tension, compression, metallic glass (amorphous metal) |
| 相關次數: | 點閱:95 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以分子動力學模擬來探討尺寸的改變對金屬與金屬玻璃奈米線機械性質的影響。金屬奈米線我們選用面心立方的銅以[001]方向做軸向拉伸與壓縮,而金屬玻璃奈米線我們選用銅鋯鈦三元合金來做[001]方向的軸向拉伸與壓縮。而為了減少熱震動對微觀結果的擾動與影響,我們將系統溫度維持在接近絕對0度下進行,以釐清尺寸對結構與機械性質影響。
在金屬銅奈米線中我們發現無論是在平衡、拉伸以及壓縮,其表層原子與內部原子之應力、楊氏模數、以及能量變化上具有不同的表現。由於不同尺寸下的金屬銅奈米線表面原子所佔系統原子比例與奈米線尺寸呈非線性關係,而使得上述物理性質也與奈米線尺寸呈現非線性關係。
我們在金屬玻璃奈米線的拉伸與壓縮試驗中發現奈米尺寸下金屬玻璃是以延性的方式形變而非巨觀下以脆性破裂的方式形變,尺寸的改變不僅改變了金屬玻璃機械性質,同時還改變了其變形方式。
In this study, we use molecular dynamics simulation to investigate the impact of size effect on the mechanical properties of metal and metallic glass nanowires. We select face-centered cubic copper nanowire to simulate the axial tensile and compression on [001] direction. For metallic glass, we selected Cu-Zr-Ti ternary alloy to do the axial tension and compression on [001] direction. In order to reduce the impact of thermal vibration on atomic level simulations, we maintain the system temperature near 0 K to clarify the size effect of the structure and mechanical properties.
We found by simulation of copper nanowires that, stress, Young’s modulus, and potential energy behave differently in surficial atoms and interior ones under equilibration, tension, and compression tests. The fact that proportion of surficial atoms in copper nanowires doesn’t increase with nanowire diameter also leads to nonlinearity between the above physical behaviors and nanowire diameter.
On the other hand, with tension and compression tests of metallic glass nanowires, we found that in nanoscale, ductile deformation is the dominant mechanism, while brittle deformation is the bulk counterpart. In general, we found that size difference in metal glass nanowire not only affects mechanical properties, but also the way it deforms
[1] J. William D. Callister, FUNDAMENTALS OF Materials Science and Engineering.
[2] K. Gall, J. K. Diao, and M. L. Dunn, "The strength of gold nanowires," Nano Letters, vol. 4, pp. 2431-2436, Dec 2004.
[3] J. R. Greer, D. C. Jang, J. Y. Kim, and M. J. Burek, "Emergence of New Mechanical Functionality in Materials via Size Reduction," Advanced Functional Materials, vol. 19, pp. 2880-2886, Sep 2009.
[4] R. E. Miller and V. B. Shenoy, "Size-dependent elastic properties of nanosized structural elements," Nanotechnology, vol. 11, pp. 139-147, Sep 2000.
[5] D. Huang and P. Z. Qiao, "Mechanical Behavior and Size Sensitivity of Nanocrystalline Nickel Wires Using Molecular Dynamics Simulation," Journal of Aerospace Engineering, vol. 24, pp. 147-153, Apr 2011.
[6] L. F. Wang and H. Y. Hu, "SIZE EFFECTS ON EFFECTIVE YOUNG'S MODULUS OF NANO CRYSTAL COPPER WIRES," International Journal of Computational Methods, vol. 2, pp. 315-326, Sep 2005.
[7] H. A. Wu, "Molecular dynamics study on mechanics of metal nanowire," Mechanics Research Communications, vol. 33, pp. 9-16, Jan-Feb 2006.
[8] W. L. Johnson, "Bulk amorphous metal - An emerging engineering material," Jom-Journal of the Minerals Metals & Materials Society, vol. 54, pp. 40-43, Mar 2002.
[9] H. Guo, P. F. Yan, Y. B. Wang, J. Tan, Z. F. Zhang, M. L. Sui, and E. Ma, "Tensile ductility and necking of metallic glass," Nature Materials, vol. 6, pp. 735-739, Oct 2007.
[10] F. Shimizu, S. Ogata, and J. Li, "Yield point of metallic glass," Acta Materialia, vol. 54, pp. 4293-4298, Sep 2006.
[11] F. Shimizu, S. Ogata, and J. Li, "Theory of shear banding in metallic glasses and molecular dynamics calculations," Materials Transactions, vol. 48, pp. 2923-2927, Nov 2007.
[12] Q. K. Li and M. Li, "Assessing the critical sizes for shear band formation in metallic glasses from molecular dynamics simulation," Applied Physics Letters, vol. 91, Dec 2007.
[13] Q. K. Li and M. Li, "Molecular dynamics simulation of intrinsic and extrinsic mechanical properties of amorphous metals," Intermetallics, vol. 14, pp. 1005-1010, Aug-Sep 2006.
[14] F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys," Physical Review B, vol. 48, pp. 22-33, 1993.
[15] V. Rosato, M. Guillope, and B. Legrand, "Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model," Philosophical Magazine A, vol. 59, pp. 321-336, 1989/02/01 1989.
[16] X. W. Zhou, "Analytical and numerical calculations of interatomic forces and stresses," Molecular Simulation, vol. 31, pp. 715-723, 2005/08/01 2005.
[17] L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules," Physical Review, vol. 159, pp. 98-103, 1967.
[18] L. Verlet, "Computer "Experiments" on Classical Fluids. II. Equilibrium Correlation Functions," Physical Review, vol. 165, pp. 201-214, 1968.
[19] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol. 76, pp. 637-649, 1982.
[20] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, "Molecular dynamics with coupling to an external bath," The Journal of Chemical Physics, vol. 81, pp. 3684-3690, 1984.
[21] M. I. J. Probert, "Improved algorithm for geometry optimisation using damped molecular dynamics," Journal of Computational Physics, vol. 191, pp. 130-146, 2003.
[22] H. Ikeda, Y. Qi, T. Cagin, K. Samwer, W. L. Johnson, and W. A. Goddard, "Strain rate induced amorphization in metallic nanowires," Physical Review Letters, vol. 82, pp. 2900-2903, Apr 1999.
[23] M. Zhou, "A new look at the atomic level virial stress: on continuum-molecular system equivalence," Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, vol. 459, pp. 2347-2392, Sep 2003.
[24] J. D. Honeycutt and H. C. Andersen, "MOLECULAR-DYNAMICS STUDY OF MELTING AND FREEZING OF SMALL LENNARD-JONES CLUSTERS," Journal of Physical Chemistry, vol. 91, pp. 4950-4963, Sep 1987.
[25] H. Jónsson and H. C. Andersen, "Icosahedral Ordering in the Lennard-Jones Liquid and Glass," Physical Review Letters, vol. 60, pp. 2295-2298, 1988.
[26] A. Stukowski, "Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool," Modelling and Simulation in Materials Science and Engineering, vol. 18, Jan 2010.
[27] B. Qin and W. S. Lai, "Metallic glass-forming composition range of the Cu-Zr-Ti ternary system determined by molecular dynamics simulations with many-body potentials," Journal of Materials Research, vol. 26, pp. 547-560, Feb 2011.
[28] R. Zhu, E. Pan, P. W. Chung, X. Cai, K. M. Liew, and A. Buldum, "Atomistic calculation of elastic moduli in strained silicon," Semiconductor Science and Technology, vol. 21, pp. 906-911, Jul 2006.
[29] J. William D. Callister, MATERIALS SCIENCE AND ENGINEERING AN INTRODUCTION, 6 ed.
[30] M. M. a. K. Chawla, Mechanical Behavior of MATERIALS, 2 ed.
[31] M. M. a. K. Chawla, PHYSICAL METALLURGY PRINCIPLES, THIRD ed.