| 研究生: |
林鈺晶 Lin, Yu-Ching |
|---|---|
| 論文名稱: |
超音波量化參數在阿基里斯腱強度之探討 Quantification of Achilles tendon Strength by Ultrasound Techniques |
| 指導教授: |
林啟禎
Lin, Chii-Jeng 陳天送 Chen, Tain-Song |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 超音波量化參數 、波速 、波衰減 、阿基里斯腱 |
| 外文關鍵詞: | QUS, SOS, BUA, Achilles tendon |
| 相關次數: | 點閱:167 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臨床上常發現阿基里斯肌腱因斷裂或張力過強而需要進行縫補或進行肌腱延長手術之案例,對於上述手術技術及患者手術後之評估,目前大都依靠臨床醫師個人之經驗,臨床尚無可用之量化的參數可作為輔助診斷之依據。本研究利用二維高頻超音波掃描儀HDI 5000及二維超音波骨密度儀UBIS 5000,量測阿基里斯腱厚度與超音波參數BUA及SOS,希望能從其中找出與阿基里斯腱強度之相關性,以提供臨床醫師作為輔助診斷及評估之參考依據。
本研究以年輕族群(23.7±2.0歲之男性17人及女性32人)與中年族群(47.3±8.5歲之中年男女各8人)為測試對象。年輕族群的BUA較中年族群高(年輕族群:45.2±1.6dB/MHz,中年族群:40.5±1.9dB/MHz),年輕族群的SOS較中年族群低(年輕族群:1601.9±11.2m/s,中年族群:1623.96±8.66m/s),年輕族群與中年族群之阿基里斯腱厚度則無統計上的差異。(年輕族群:4.3±0.2mm,中年族群:4.2±0.2mm)。在臨床跟骨肌腱拉長術(ATL)病患手術前後之量測,初步發現患者於開刀後,阿基里斯腱厚度由4mm增加至4.3mm,而BUA值增加7.2%,SOS值減少0.6%。
阿基里斯腱因年老而產生退化後,肌腱纖維數量與纖維內部含水量減少,造成超音波參數BUA減少、SOS增加及厚度減少,本研究結果結果與阿基里斯腱實際的組織特性是相符的。利用超音波參數BUA與SOS來評估阿基里斯腱強度是可行的。
In clinical, Achilles tendon rupture and overstrain are common, and a surgical treatment such as tendon repair or Achilles tendon lengthening (ATL) is necessary. Most of the post-operation evaluations are highly dependent on the clinical experience. A quantitative assessment for Achilles tendon is needed in clinical evaluation. This study was undertaken to measure and compare the quantitative ultrasound (QUS) parameters (BUA and SOS) and the thickness of Achilles tendon with 2D ultrasound instruments. We expect this study to find the correlations between the measurements and the Achilles tendon strength and the quantitative results will improve the evaluation of clinical diagnosis.
The test subjects are divided into young group(32 female and 17 male, mean age 23.7±2.0 years) and middle age group(8 female and 8 male, mean age 47.3±8.5years). The BUAs are higher in young group(45.2±1.6dB/MHz) than those in the middle age group(40.5±1.9dB/MHz). The SOSs are higher in middle age group(1624.1±8.7m/s) than those in the young group(1601.9±11.2m/s). Achilles tendon thickness of young group(4.31±0.23mm) and middle age group(4.24±0.23mm) are approximate. For the ATL patients, the Achilles tendon thickness increase from 4mm to 4.33mm, BUA increase about 7.2%, and SOS decrease about 0.6% after operation.
The Achilles tendon is subject to degeneration within the substance of the tendon with age. Degeneration in a tendon usually shows up as a loss of the fibers and water content of the tendon. It leads to BUA increase, SOS decrease, and thickness decrease. The result corresponds to the actual property of Achilles tendon. It is practicable to quantify the Achilles tendon condition by QUS and thickness.
[1] B. D. Fornage, “Achilles tendon : US examination,” Radiology, Vol. 159, pp. 759-764, 1986.
[2] Massachusetts General Hospital.
http://www.mgh.harvard.edu/ortho/AchillesTendonInjuries.htm
[3] M. F. Mazzone and T. Mccue, “Common condition of the Achilles tendon”, American family physician, Vol. 65, No. 9, May, 2002.
[4] G. Lewis and K. M. Shaw, “Tensile properties of human tendon
Achilles: Effect of donor age and strain rate,” Journal of Foot and Ankle Surgery Vol. 36, pp. 435-45, 1997.
[5] B. M. Nigg and W. Herzog, “Biomechanics of the musculo-skeletal system,” New York: John Wiely & Sons, 1994.
[6] M. Paavola, P. Pekka, T.A.H. Jarvinen, K. Khan, L. Jozsa and M. Jarvinen, “ Current concept review: Achilles tendinopathy,” J Bone& Joint Surgery, Vol. 84-A, pp. 2062-2076, 2002.
[7] 成功大大附設醫院醫院骨科部.
http://ortho.clmed.ncku.edu.tw/~cjlin/sports/sports021.html
[8] C. L. Blei, “Achilles tendon: US diagnosis of pathologic
conditions,” Radiology, Vol. 158, pp. 765-7, 1986.
[9] D. R. Frank, “Diagnosis, management and post-surgical
rehabilitation of Achilles tendon rupture:A case report”, JCCA,
Vol. 47, No. 4, 2003.
[10] M. Bertolotto, “High resolution ultrasound anatomy of normal Achilles tendon,” Br J Radiol, Vol. 68, pp. 986-991,1995.
[11] C. Martinoli, “Analysis of echotexture of tendon with US,” Radiology, Vol. 186, pp. 839-843,1993.
[12] 蔡家良,“量化筋腱超因波影像異向性之技術,”台灣大學電機工程研究所碩士論文, 2000.
[13] T. A. Tuthill, J. M. Rubin, J. B. Fowlkes, D. A. Jamadar and R. O. Blue, “Frequency analysis of echo texture in tendon”, Ultrasound in Med. & Biol., Vol. 25, No. 6, pp. 959-968, 1999.
[14] Emedicine, instant access to the minds of medicine.
http://www.emedicine.com/pmr/topic219.htm
[15] M. J. Mueller, D. R. Sinacore, M. K. Hastings and M. J. Strube, “ Effect of Achilles tendon lengthing on neuropathic plantar ulcers,” J Bone& Joint Surgery, Vol. 85, pp. 1436-1445, 2003.
[16] P. L. Kuo, P. C. Li and M. L. Li, “Elastic properties of tendon
measured by two different approaches”, Ultrasound in Med. &
Biol., Vol. 27, No. 9, pp. 1275-1284, 2001.
[17] T. A. L. Wren, S. A. Yerby, G. S. Beaupré and D. R. Carter,
“Mechanical properties of the human Achilles tendon”, Clinical
Biomechanics, Vol. 16, pp. 245-251, 2001.
[18] 林家名,“骨痂延長術與肌腱、韌帶力量量測系統,”台灣大學電機工程研究所碩士論文, 2002.
[19] M. Ying, E. Yeung, B. Li, W. Li, M. Lui and C. W. Tsoi, “ Sonographic evaluation of the size of achilles tendon: The effect of exercise and dominance of the ankle,” Ultrasound Med. & Biol., Vol. 29, No. 5, pp. 637-642, 2003.
[20] C. Y. Wang and K. K. Shung, “Variation in ultrasonic
backscattering from skeletal muscle during passive stretching”, Ultrasoincs, Ferroelectrics, and Frequency Control, IEEE, Vol. 45, No. 2,1998.
[21] P. O. Kuo, P. C. Li and M. L. Li, “ Elastic properties of tendon measured by two different approaches,” Ultrasound in Med. & Biol., Vol. 27, No. 9, pp. 1275-1284, 2001.
[22] G. Brandenburger, L. Avioii, C. C. III, R. Heaney, R. Poss, G. Pratt and R. Recker, “In-vivo Measurement of Osteoporostic Bone Fragility with Apparent velocity of Ultrasound,” IEEE Ultrasonic Symposium, pp.1023-1027, 1989.
[23] C. Brandenburger, K. Waud and D. Baran, “The importance of coupling path correction for velocity measurements of the heel”, IEEE Ultrasonic Symposium, pp. 1087-1091, 1992.
[24] University of California, Davis.
dahweb.engr.ucdavis.edu/dahweb/126site/chp5.pdf
[25] R. Streltitzki and J. A. Evans, “On the measurement of the velocity of ultrasound in the os calcis using shoret pulses”, European Journal of Ultrasound, Vol. 4, pp. 205-213, 1996.
[26] K. Wear, “Measurement of phase velocity and group velocity in human calcaneal”, Ultrasound in Med. & Biol., Vol. 26, No. 4, pp. 641-646, 2000.
[27] P. H. F. Nicholson, G. Lowet, C. M. Langton , J. Dequeker and G. V. Pere, “A comparison of time-domain and frequency-domain approaches to ultrasonic velocisity measurement in trabecular bone”, Phys. Med. Biol., Vol. 41, pp. 2421-2435, 1996.
[28] 建國理工科技所
http://www.getgoal.com.tw/tech/tech-16-2.htm
[29] J. A. Evans and M. B. Tavakoli, “Ultrasonic attenuation and velocity in bone”, Phys. Med. Biol, Vol. 35, pp. 1387-1396, 1990.
[30] 李志緯,陳天送,姚維仁,”利用超音波技術評估骨頭的機械特性,”成功大學醫學工程研究所碩士論文, 2001.
[31] P. Laugier, B. Fournier and G. Berger, “Ultrasound parametric imaging og calcaneus: In vivo results with a new device”, Calcif Tissue Int., Vol. 58, pp. 326-331, 1996.
[32] M. Defontaine, D. Certon, L. Colin, C. Yvon, P. Vince and E. Lacaze, “A prototype of a 500kHz ultrasonic material device: Beam scanner”, IEEE Ultrasonic Symposium, pp. 1585-1588, 1999.
[33] UBIS 5000 homepage.
http://www.dms.com/pages/osteo_ubis_pst.html
[34] HDI 5000 homepage.
http://www.medical.philips.com/main/products/ultrasound/general
[35] T. Garcia, W. J. Hornof and M. F. Insana, “On the ultrasonic properties of tendon”, Ultrasound in Med. & Biol., Vol. 29, No. 12, pp. 1787-1797, 2003.
[36] T. M. Best and W. E. Garrett, “Basic science of soft tissue: Muscle and Tendon”, Orthopaedic Sports Medicine, pp.1-45, 1994.
[37] C. N. Maganaris and J. P. Paul, “Tensile properties of the in vivo human gastrocnemius tendon,” Journal of Biomechanics, Vol. 35 , pp. 1639-1646, 2002.
[38] W. K. Carey, D. B. Chuang and S. S. Hemami, “Regularity-preserving image interpolation,” Image Processing, Vol. 8, pp. 1293-1297, 1999.
[39] F. G. B. De Natale, G. S. Desoli and D. D Giusto, “Adaptive least-squares bilinear interpolation (ALSBI): a new approach to image-data compression,” Electronics Letters, Vol. 29 , pp. 1638–1640, 1993.
[40] S. Hongjian and R. Ward, “Canny edge based image expansion,” Circuits and Systems, Vol. 1, pp. I-785 - I-788, 2002.
[41] D. C. Chang and W. R. Wu, “Image contrast enhancement based on a local standard deviation model,” Nuclear Science Symposium, Vol. 3, pp. 1826 – 1830, 1996.
[42] D. C. Chang and W. R. Wu, “Image contrast enhancement based on a histogram transformation of local standard deviation,” Medical Imaging, Vol. 17, pp. 518 - 531, 1998.
[43] J. R. Carr and F. P. Miranda, “The semivariogram in comparison to the co-occurrence matrix for classification of image texture,” Geoscience and Remote Sensing, Vol. 36, pp. 1945 – 1952, 1998.
[44] L. Middleton, “The co-occurrence matrix in square and hexagonal lattices,” Control, Automation, Robotics and Vision, Vol. 1, pp. 90 – 95, 2002.
[45] R. Sapina, “Computing textural features based on co-occurrence matrix for infrared images,” Image and Signal Processing and Analysis, Vol. 19-21, pp. 373 – 376, 2001.
[46] Canny Edge Detection Tutorial.
http://www.paes.drexel.edu/~weg22/can_tut.html
[47] O. Laligant, F. Trguchete and J. Miteran, “Edge detection by multiscale merging,” Time-Frequency and Time-Scale Analysis, Vol.25-28, pp. 237-240, 1994.
[48] M. Ali and D. Clausi, “Using the Canny edge detector for feature extraction and enhancement of remote sensing images,” Geoscience and Remote Sensing Symposium, IEEE, Vol. 5, pp.2298 – 2300, 2001.
[49] S. Lanser and W. Eckstein, “A modification of Deriche's approach to edge detection,” Image, Speech and Signal Analysis, Vol. 30, pp.633 – 637, 1992.
[50] The institute for foot and ankle reconstruction at mercy.
http://www.footandankle.mdmercy.com