| 研究生: |
許育銘 Hsu, Yu-Ming |
|---|---|
| 論文名稱: |
選擇性雷射熔融鎳鐵軟磁材料之磁與機械特性最佳化研究 Optimization of Magnetic and Mechanical Characteristics of Selective Laser Melted NiFe Soft Magnetic Composites |
| 指導教授: |
鍾俊輝
Chung, Chun-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 鎳鐵 、選擇性雷射熔融 、磁特性 、機械性質 |
| 外文關鍵詞: | Selective laser melting, Soft magnetic composite, NiFe, Additive manufacturing |
| 相關次數: | 點閱:47 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
選擇性雷射熔融(Selective Laser Melting, SLM),現今主流的金屬積層製造技術之一,多應用於高精度與高複雜度的三維結構樣品製程,同時也廣泛應用在陶瓷材料及其他功能性材料之產品生產。本研究以選擇性雷射熔融積層製造進行鎳鐵軟磁複合材料之樣品製造,以了解製程參數對於此材料之磁特性與機械性質的影響。為提高實驗效率,本研究以田口實驗設計中L9直交表進行實驗設計並執行三次實驗與一次驗證組實驗。首次實驗參數分別為氧濃度0-6000 ppm、雷射功率150-250 W、雷射掃描速度400-1000 mm/s、以及線間距0.05-0.07 mm。實驗結果顯示以掃描速率與線間距為主要影響因子,隨掃描速率與線間距越低時,鐵損、磁導率與極限拉伸應力越高,同時也確立後續實驗設計以低氧濃度、高雷射功率、低掃描速率與低線間距為最佳化趨勢。在第二次與第三次實驗中以氧濃度作為主要影響因子,最佳化趨勢維持低氧濃度、高雷射功率、低掃描速率與低線間距。在所有實驗中,磁導率、鐵損與極限拉伸應力具有相同的因子反應趨勢。最後驗證實驗中,參數組合為氧濃度~0ppm,雷射功率260W,掃描速率200mm/s,線間距0.08mm,磁導率在操作頻率50、200、400、800赫茲下分別為1361.95, 574.70, 406.20, 220.86,極限拉伸應力則達到619.42MPa,與第三次實驗中最佳數據相比,所有頻率下之磁特性均有提升,特別是50赫茲下提升超過30%,而機械性質也維持較佳的表現,且標準差較小,數值更加穩定,證實了以低氧濃度、高雷射功率、低掃描速率與低線間距對磁與機械特性之最佳化效果。
Selective Laser Melting (SLM) is one of modern popular additive manufacture methods. With less geometry limit and outstanding precision, SLM has been investigated to process soft magnetic components for the applications such as acoustics, motors, recording heads, and integrated inductors. Permalloy generally refers to the iron-nickel alloy with 30 ~ 90% nickel content. Due to its high permeability, low coercivity, and almost zero hysteresis, permalloy is widely applied in high-frequency sensors, transformers, induction devices, etc. In this study, we investigated the mechanical and magnetic properties of Fe-79Ni-4Mo soft magnetic alloy manufactured by SLM process. Three experiments were conducted based on L9 orthogonal array to improve the properties progressively. The optimized parameters were the oxygen concentration ~0 ppm, laser power of 260 W, scanning speed of 200 mm/s, and hatch distance of 0.08 mm. The validation test performed the optimized average relative permeability of 1361.95, 574.70, 406.20, and 220.86 at the operating frequencies of 50, 200, 400, and 800 Hz, respectively; while the ultimate tensile strength was 619.42 MPa.
1. H. Shokrollahi, K. Janghorban, “Soft magnetic composite materials (SMCs),” Journal of Materials Processing Technology, Vol. 189, pages 1-12, 2007.
2. R. M. Bozorth, “The Permalloy Problem,” Reviews of Modern Physics, Vol. 25, 1953.
3. H. D. Arnold, G. W. Elmen, “Permalloy, A New Magnetic Material of Very High Permeability,” Bell Labs Technical Journal, Vol. 2, pages 101-111, 1923.
4. Y. Shirakata, N. Hidaka, M. Ishitsuka, A. Teramoto and T. Ohmi, “High Permeability and Low Loss Ni–Fe Composite Material for High-Frequency Applications,” IEEE Transactions on Magnetics, Vol. 44, pages 2100-2106, 2008.
5. J. Sun, Y. Lu, L. Zhang, Y. Le and X. Zhao, “A Method to Measure Permeability of Permalloy in Extremely Weak Magnetic Field Based on Rayleigh Model,” Materials Vol.15, 2022.
6. H. Li, F. Jiang, S. Ni, L. Li, G. Sha, X. Liao, S. P. Ringer, H. Choo, P. K. Liaw, Amit Misra, “Mechanical behaviors of as-deposited and annealed nanostructured Ni–Fe alloys,” Scripta Materialia, Vol. 65, pages 1-4, 2011.
7. W. Louis M. Tasovac, Baum Jr., “Magnetic Properties of Metal Injection Molding (MIM) Materials,” Advances in Powder Metallurgy & Particulate Materials, Vol. 5, pages 189-204, 1993.
8. J. Ma, M. Qin, L. Zhang, R. Zhang, L. Tian, X. Zhang, X. Li, X. Qu and D. F. Khan, “Magnetic properties of Fe–50%Ni alloy fabricated by metal injection molding,” Materials & Design, Vol. 51, pages 1018-1022, 2013.
9. H. Miura, ”Metal injection molding (MIM) of soft magnetic materials,” Handbook of Metal Injection Molding, pages 499-524, 2012.
10. J. Ma, M. Qin, L. Zhang, R. Zhang and X. Qu “Microstructure and magnetic properties of Fe–50%Ni alloy fabricated by powder injection molding,” Journal of Magnetism and Magnetic Materials, Vol. 329, pages 24-29, 2013.
11. G. Herzer, “Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets,” IEEE Transactions on Magnetics, Vol. 26, pages 1397-1402, 1990.
12. H. G. Rutz and F. G. Hanejko, “High density processing of high performance ferrous materials,” International Journal of Powder Metallurgy, Vol. 31 pages 9-17, 1995.
13. Q. Yin, G. Chen, Y. Ma, J. Cao, Y. Huang, Z. Dong, B. Zhang and X. Leng, “Microstructure evolution and magnetic shielding effect of permalloy deposition on molybdenum substrate by electron beam freeform fabrication,” Additive Manufacturing, Vol. 56, Article 102936, 2022.
14. C.V. Mikler, V. Chaudhary, T. Borkar, V. Soni, D. Choudhuri, R.V. Ramanujan and R. Banerjee, “Laser additive processing of Ni-Fe-V and Ni-Fe-Mo Permalloys: Microstructure and magnetic properties,” Materials Letters, Vol. 192, pages 9-11, 2017.
15. B. Zhang, N.-E. Fenineche, L. Zhu, H. Liao and C. Coddet, “Studies of magnetic properties of permalloy (Fe–30%Ni) prepared by SLM technology,” Journal of Magnetism and Magnetic Materials, Vol. 324, pages 495-500, 2012.
16. A.K. Mazeeva, M.V. Staritsyn, V.V. Bobyr, S.A. Manninen, P.A. Kuznetsov and V.N. Klimov, “Magnetic properties of Fe-Ni permalloy produced by selective laser melting,” Journal of Alloys and Compounds, Vol. 814, Article 152315, 2020.
17. B. Zhang, N.-E. Fenineche, H. Liao and C. Coddet, “Magnetic properties of in-situ synthesized FeNi3 by selective laser melting Fe-80%Ni powders,” Journal of Magnetism and Magnetic Materials, Vol. 336, pages 49-54, 2013.
18. B. Li, W. Fa, H. Xu, B. Qian and F. Xuan, “Additively manufactured Ni-15Fe-5Mo Permalloy via selective laser melting and subsequent annealing for magnetic-shielding structures Process, micro-structural and soft-magnetic characteristics,” Journal of Magnetism and Magnetic Materials, Vol. 494, Article 165754, 2020.
19. J. Yang, Q. Zhu, Z. Wang, F. Xiong, Q. Li, F. Yang, R. Li, X. Ge and M. Wang, “Effects of metallurgical defects on magnetic properties of SLM,” Materials Characterization, Vol. 197, Article 112672, 2023.
20. A. El-M. A. Mohamed, Ji Zou, R. S. Sheridan, K. Bongs and M. M. Attallah, “Magnetic shielding promotion via the control of magnetic anisotropy and thermal Post processing in laser powder bed fusion processed NiFeMo-based soft magnet,” Additive Manufacturing, Vol. 32, Article 101079, 2020.
21. S. Gao, X Yan, C. Chang, X. Xie, Q. Chu, Z. Deng, B. Lu, M. Liu, H. Liao and N. Feninech, “Finished surface morphology, microstructure and magnetic properties of selective laser melted Fe-50wt% Ni permalloy,” Acta Metallurgica Sinica (English Letters), Vol. 35, pages 1439-1452, 2022.
22. 何立堃, 3D雷射積層製備磁性元件之鐵鎳粉末的雙氣體物化製作及磁性質之探討. 材料科學及工程學系. 碩士論文. 國立成功大學. 2017.
23. Taguchi, G.J.Q.R.(1987). Taguchi techniques for quality engineering. Quality Resources, New York.
24. T. Kıvak, “Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts” Measurement, Vol.50, pages 19-28, 2014.
25. T. Y. Huang, C. W. Cheng, A. C. Lee, T. W. Chang, M. C TsaI., “Influence of Wobble-Based Scanning Strategy on Surface Morphology of Laser Powder Bed-Fabricated Permalloy” Materials, Vol. 16, Article 2062, 2023.
26. 廖凱唯, 機器學習應用於軟磁材料積層製造之磁特性預測. 機械工程學系. 碩士論文. 國立成功大學. 2019.
校內:2028-08-24公開