簡易檢索 / 詳目顯示

研究生: 余人皓
Yu, Ren-Hao
論文名稱: (BaTiO3/BaSnO3)n多層膜結構對BaTiO3薄膜結構和電性影響之研究
Characterization of BaTiO3 in (BaTiO3/BaSnO3)n multilayers
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 101
中文關鍵詞: 居里溫度應變多層膜
外文關鍵詞: non-uniform strain, Curie temperature, BaTiO3, multilayers
相關次數: 點閱:108下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用射頻磁控濺鍍法在Pt/Ti/SiO2/Si的基板上交疊沉積(BaTiO3/BaSnO3)n 多層膜,藉由沉積時所產生的應力和材料間熱膨脹係數不同所產生熱應力,而這些應力作用在多層膜間產生應變,進而探討應變對於多層膜的結晶性、表面形貌和電性之影響。
    實驗結果顯示,BaTiO3單層膜經過600 ℃以上熱處理10 min,可得正方晶結構,而多層膜則需更高的溫度才會有結晶的出現,可能是受到層間應力影響,致使晶粒微細。
    薄膜疊層會引起較大應力,當堆疊4層時,薄膜表層厚度約60 nm,此時表面會出現裂縫。在總厚度不變的前提下,隨堆疊層數增加,表面層厚度減少,反而可維持高應力而沒有裂縫生成。
    經由電滯曲線之量測,發現單層BaTiO3的居里溫度約為120 ℃,但多層結構在10 ℃的低溫下仍呈現順電性,代表多層技術可能降低居里溫度至室溫以下。經過C-V和I-V量測後,發現多疊層數2層時,擁有較高的介電常數和較低的漏電流密度。

    In this study, (BaTiO3/BaSnO3)n multilayers are prepared by RF magnetron sputtering on Pt/Ti/SiO2/Si substrate. Structure of crystallization, surface morphology and electric properties are characterized as function of non-uniform strain which caused by depostition and thermal stress.
    The results show that the structure of BaTiO3 thin film annealed above 600 ℃ for 10 min is perovskite tetragonal structure, but the crystal of multilayers find as annealed at a higher temperature should be caused by tiny grain size induced by strain. Crevices are found on the top layer for a 4 layers structure which maybe caused by internal stress. However, a thinner top layer can avoid crevices formation at high stress level.
    By P-E measurement, the Curie temperature of BaTiO3 thin film is about 120 ℃. However, the Curie temperature of multilayers is lower than 10 ℃ because it shows paraelectric property at 10 ℃.

    摘要 I Abstract II 致謝 III 總目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 研究背景與目的 2 第二章 理論基礎 8 2-1 介電質對電容的影響 8 2-2 介電材料極化性質 9 2-3 介電特性 13 2-3-1 順電性材料 13 2-3-2 強電性材料 13 2-4 鐵電性和晶域結構 14 2-4-1 鐵電現象基本特性 14 2-4-2 介電特性受晶域之影響 16 2-5 鈦酸鋇晶體結構及特性 19 2-6 錫酸鋇的晶體結構及特性 21 2-7 電極材料對薄膜性質的影響 24 2-8 濺鍍理論 24 2-8-1 何謂濺鍍 24 2-8-2 射頻濺鍍 25 2-8-3 磁控濺鍍 25 2-9 薄膜沉積原理 29 2-9-1 沉積現象 29 2-9-2 鍍層微結構的Thornton模型 31 2-10 退火對材料之影響 33 2-11 薄膜應力 35 2-11-1 應力的種類 35 2-12 結晶粒之大小與不均勻應變所生繞射線寬化 37 第三章 實驗方法與步驟 40 3-1 實驗流程圖 40 3-2 實驗系統說明 41 3-3 實驗原料 44 3-4 靶材製作 45 3-4-1 鈦酸鋇靶製備 46 3-5 薄膜沉積 46 3-5-1 Pt/Ti/SiO2/Si基板之製備 46 3-5-2 基板準備 49 3-5-3 沉積步驟 49 3-5-4 退火處理 50 3-6 性質分析與量測 50 3-6-1 晶體結構分析 50 3-6-2 薄膜表面和截面分析 52 3-6-3 縱深分析 52 3-6-4 電性量測 52 第四章 結果與討論 55 4-1 靶材性質 55 4-2 製程參數對薄膜沉積速率和結構的影響 55 4-2-1 濺鍍功率 55 4-2-2 氧分率 58 4-3 薄膜晶體結構分析 60 4-3-1 BaTiO3單層膜 60 4-3-2 (BT/BS)n多層膜 65 4-3-2-1 結晶粒之大小與不均勻應變所生繞射線寬化 67 4-4 薄膜表面和截面觀察 73 4-4-1 BaTiO3單層膜 73 4-4-2 (BT/BS)n多層膜 73 4-5 熱處理對層間成份的影響 78 4-6 層數對電性的影響 78 4-6-1 介電性質 78 4-6-1-1 BaTiO3單層膜 78 4-6-1-2 (BT/BS)n多層膜 82 4-6-2 C-T特性 85 4-6-3 漏電流-電壓 85 4-6-4 P-E特性 86 第五章 結論 93 參考文獻 95

    1. 汪建民,強介電陶瓷薄膜專題緒論,工業材料,107期,(1995) 44-48。
    2. 黃文正、呂宗昕,強介電薄膜材料技術專題導言,工業材料,155期,(1999) 121。
    3. J. Carrano, C. Sudhama, J. Lee, A. Tasch, W.H. Shepherd, and N. Abt, “Electrical and reliability properties of PZT thin films for ULSI DRAM applications,” IEEE Trans. Ultrasonics, Ferroelectrics Freq. Control 38 (1991) 690.
    4. E. C. Subbarao, “A Family of Ferroelectric Bismuth Compounds,” J. Phys. Chem. Solids, 23(1962) 665-676.
    5. C. H. Lu. and W. J.Hwang, “Phasic and Microstructural Developments of Pb(Ni1/3Nb2/3)O3 Prepared by The Columbite Precursor Process,” Ceramics International, 22 (1996) 373-379.
    6. C. H. Lu. and W. J. Hwang, " Hydrothermal Synthesis and Dielectric Properties of Lead Nickel Niobate Ceramics,” J. J. Appl. Phys., 38 (1999) 5478.
    7. J.T. Evans and R. Womack, “An Experiment a1 512-bit Nonvolatile Memory with Ferroelectric Storage Cell,” IEEE J. Solid State Circuits 23 (1988) 1171.
    8. J.F. Scott and C.A. Paz de Araujo, “Ferroelectric memories,” Science, 246 (1989) 1400.
    9. S. Dey and R. Zuleeg, “Integrated Sol-Gel PZT Thin-Films on Pt, Si, and GaAs for Non-Volatile Memory Applications,” Ferroelectrics ,108 (1990) 37.
    10. C.A. Paz de Araujo, J.F. Scott, and O. Taylor (Eds.), “Ferroelectric Thin Films: Synthesis and Basic Properties,” Gordon and Breach, London, 1996.
    11. N. Wakiya, J. K. Wang, A. Saiki, K. Shinozaki, and N. Mizutani, “Synthesis and Dielectric Properties of Ba1−xR2x/3Nb2O6 (R: rare earth) with Tetragonal Tungsten Bronze Structure,” J. Eur. Ceram. Soc., 19 (1999) 1071.
    12. M. R. Raju and R. N. P. Choudhary, “Diffuse Phase Transition in Sr5RTi3Nb7O30 (R=La, Nd and Sm),” J. Phys. Chem. Solids, 64 (2003) 847.
    13. X. M. Chen, Z. Y. Xu, and J. Li, “Dielectric Ceramics in The BaO-Sm2O3–TiO2-Ta2O5 Quaternary System,” J. Mater. Res., 15 (2000) 125.
    14. J. J. Rubin, L.F. Van Uitert, and H.J. Levinstein, “The Growth of Single Crystal niobates for electro-optic and non-linear applications,” J. Cryst. Growth, 1 (1967) 315.
    15. 陳怡誠,高介電薄膜簡介,Internet.
    16. .S. Troutman, S. Bhattacharya, R. Tummala, and C. P. Wong, "Development of Low Viscosity, High Dielectric. Constant (K) Polymers for Integral Passive applications,” International Symposium on Advanced Packing Materials, (1999) 169-173.
    17. A. H. M. Gonzalez, A. Z. Simoes, L. S. Cavalcante, E. Longo, J. A. Varela, and C. S. Riccardi, “Soft chemical deposition of BiFeO3 multiferroic thin films,” Appl. Phys. Lett., 90 (2007) 052906.
    18. S. Ezhilvalavan and T. Y. Tseng, “Progress in The Developments of (Ba,Sr)TiO3 (BST) Thin Films for Gigabit Era DRAMs,” Mater. Chem. Phys., 65 (2000) 227–248.
    19. P. Padmini, T. R. Taylor, M. J. Lefevre, A. S. Nagra, R. A. York, and J.S. Speck, “Realization of High Tunability Barium Strontium Titanate Thin Films by RF Magnetron Sputtering,” Appl. Phys. Lett., 75 (1999) 3186–3188.
    20. K. Iijima, T. Terashima, Y. Bando, K. Kamigai, and H. Terauchi, “Atomic Layer Growth of Oxide Thin Films with Perovskite-Type Structure by Reactive Evaporation,” J. Appl. Phys., 72 (1992) 2840.
    21. H. Tabata, H. Tanaka, and T. Kawai, “Formation of Artificial BaTiO3/SrTiO3 Superlattices Using Pulsed Laser Deposition and Their Dielectric Properties,” Appl. Phys. Lett. 65 (1994) 1970.
    22. S.M. Nam, S. Mitarai, Y. Ishibashi, T. Tsurumi, and O. Fukunaga, “Fabrication of BaTiO3/SrTiO3 Artificial Superlattices by Atomic Layer Epitaxy and Their Dielectric Properties,” J. Korea Phys. Soc., 29 (1996) S632.
    23. T. Tsurumi, T. Ichikawa, T. Harigai, H. Kakemoto, and S. Wada, “Dielectric and Optical Properties of BaTiO3/SrTiO3 and BaTiO3 /BaZrO3 Superlattices,” J. Appl. Phys., 91 (2002) 2284.
    24. Takaaki Tsurumi, Takakiyo Harigai, Daisuke Tanaka, Hirofumi Kakemoto, and Satoshi Wada, “Anomalous Dielectric and Optical Properties in Perovskite-Type Artificial Superlattices,” Science and Technology of Advanced Materials, 5 (2004) 425–429.
    25. H. Tabata, H. Tanaka, and T. Kawai, “Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties,” Appl. Phys. Lett., 65 (1994) 1970.
    26. O. Nakagawara, T. Shimuta, T. Makino, S. Arai, H. Tabata, and T. Kawai, “Dependence of Dielectric and Ferroelectric Behaviors on Growth Orientation in Epitaxial BaTiO3/SrTiO3 Superlattices,” Vacuum, 66 (2002) 397–401.
    27. 吳朗,電子陶瓷(介電),全欣資訊圖書,(1994) 12。
    28. 吳朗,電子陶瓷(介電),全欣資訊圖書,(1994) 20-88。
    29. N. Setter and E. L. Colla., “Ferroelectric Ceramic,” Birkhauser Verlag Basel, (1993) 213.。
    30. 吳朗,電子陶瓷(介電),全欣資訊圖書,(1994) 161。
    31. W. Wersing, “Hysteretic properties of ferroelectric ceramic,” Ber. Deut. Keram. Ges. 51 (1974) 318-323.
    32. E. A. Little, “Dynamic Behavior of Domain Walls in Barium Titanate,” Phys. Rev., 98 (1967) 978-984.
    33. W. R. Buessem, L. E. Cross, and A. K. Goswami, “Phenomenological Theory of High Permittivity in Coarse-Grains Barium Titanate,” J. Am. Ceram. Soc., 49 (1966) 33-36.
    34. G. Arlt, D. Hennings, and G. Dewith, “Dielectric Properties of Fine-Grained Barium Titanate Ceramics,” J. Appl. Phys., 58 (1985) 1619-1625.
    35. 吳朗,電子陶瓷(介電),全欣資訊圖書,(1994) 152-154。
    36. H.F. Kay and P. Vousden, “Symmetry Changes in Barium Titanate at Low Temperatures and Their Relation to Its Ferroelectric Properties,” Phil. Mag., 7 (1949) 1019-1040.
    37. G. Shirane, F. Jona, and R. Pepinsky, Proc. IRE., (1955)1738.
    38. 魏烔權,“電工材料”,(1993) 214。
    39. K. H. Yoon, J. H. Kim, K. H. Jo, H. I. Song, S. O. Yoon, and C. S. Kim, “Structural and Dielectric Studies in The (Ba0.9Ca0.1)(Ti1−xSnx)O3 ,” J. of Mat. Sci., 23 (1988) 61.
    40. Grill, W. Kane, J. Viggiano, M. Brady, and R. Laibowitz, “Base Electrodes for High Dielectric Constant Oxide Materials in Silicon Technology,” Mater. Res., 7 (1992) 3260-3265.
    41. Milton Ohring, “The Materials Science off Thin Films,” Academic Press, (1992) 129-131.
    42. SVC Corporate Sponsors, “Historical Timeline of Vacuum Coating and Vacuum/Plasma Technology.”
    43. 徐濱士,神奇的表面工程,清華大學出版社,(2000) 77。
    44. 麻蒔立男著,陳克紹和曹永偉,薄膜技術,金文出版社,(1986) 102。
    45. M. Harsdorff, “The Influence of Charged Point Defects and Contamination of Substrate Surfaces on Nucleation,” Thin Solid Film, 116 (1984) 55-74.
    46. J. A. Thornton, “Influence of Apparatus Geometry and Deposition Conditions on The Structure and Topography of Thick Sputtered Coatings,” J. Vac. Sci. Technol., 11 (1974) 666.
    47. O. Abe and Y. Taketa, “Effects of Substrate Thermal Expansion Coefficient on The Physicaland Electrical Properties of Thick Film Resistors,” Electronic Manufacturing Technology Symposium, 1989, Proceedings. Japan IEMT Symposium, Sixth IEEE/CHMT International.
    48. S. G. Malhotra, Z. U. Rek, S. M. Yalisove, and J. C. Bilello, “Analysis Thin Film Stress Measurement Techniques,” Thin Solid Films, 301 (1997) 45-54.
    49. 李正中,薄膜光學與鍍膜技術,藝軒書局,(1999) 277-279.
    50. 羅吉宗,固態物理,滄海書局,(2007) 52。
    51. D. E. Rase and R. Roy, “Phase equilibria in the system BaO-TiO2," J. Chem. Phys., 19 (1951) 33-40.
    52. B. H. Tsao, R. L.C. Wu, S. F. Carr and J. A. Weimer, “The Effect of Oxygen on The Barium Titanate Film Capacitor,”Energy Conversion Engineering Conference, 1 (1997) 323-328.
    53. J. A. Thornton, “Influence of Apparatus Geometry and Deposition Condition on the Structure and Topography of Thick Sputtered Coating,” J. Vac. Sci. Technol., 12 (1975) 830-835.
    54. R. F. Pinizzotto, E. G. Jacobs, H. Yang, S. R. Sumerfelt, and B. E. Gnade, Mat. Res. Soc. Symp. Proc., 243 (1992) 463.
    55. M. de keijser, G. J. M. Dormans, P. J. Van Veldnoven and D. M. deLeeuw, “Effects of crystallite size in PbTiO3 thin films,” Appl. Phys. Lett., 59 (1991) 3556.
    56. K. Abe and S. Komatsu, “Epitaxial growth of SrTiO3 films on Pt electrodes and their electrical properties,” Jpn. J. Appl. Phys., 31 (1992) 2985-2988.
    57. D. Roy and S. B. Krupanidhi, “Pulsed excimer laser ablated barium titanate thin films,” Appl. Phys. Lett., 61 (1992) 2057.
    58. T. Horikawa, N. Mikami, T. Makita, J. Tanimura, M. Kataoka, K. Sato and M. Nunoshita, “Dielectric Properties of (Ba, Sr)TiO3 Thin Films Deposited by RF Sputtering,” Jpn. J. Appl. Phys., 32 (1993) 4126.
    59. E. Wiener-Avnear, “Artificially Engineered Pyroelectric Sr1−xBaxTiO3 Superstructure Films,” Appl. Phys. Lett., 65 (1994) 1784.
    60. Q. Liang and B. Xiaofang, “Microstructure and Grain Size Dependence of Ferroelectric Properties of BaTiO3 Thin Films on LaNiO3 Buffered Si,” Journal of the European Ceramic Society, 29 (2009) 1995–2001.
    61. L. XH, Z. Sue, O. Ma and H. Fujlmoto, MRS Symp Proc, (1998) 516.
    62. C. Zhou and D. M. Newns, “Intrinsic Dead Layer Effect and The Performance of Ferroelectric Thin Film Capacitors,” J. Appl. Phys., 82 (1997) 3081.
    63. P. Li and T. M. Lu, “Conduction Mechanisms in BaTiO3 Thin Films,” Phys. Rev. B, 43 (1991) 14261.
    64. W. Liu, J. Ko, and W. Zhu, “Asymmetric Switching Behavior of Ni/Pb1.1(Zr0.3Ti0.7)O3/Pt Thin Films”, Materials Letters, 49 (2001) 122-126.

    下載圖示 校內:2012-07-29公開
    校外:2012-07-29公開
    QR CODE