| 研究生: |
余人皓 Yu, Ren-Hao |
|---|---|
| 論文名稱: |
(BaTiO3/BaSnO3)n多層膜結構對BaTiO3薄膜結構和電性影響之研究 Characterization of BaTiO3 in (BaTiO3/BaSnO3)n multilayers |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 居里溫度 、應變 、多層膜 |
| 外文關鍵詞: | non-uniform strain, Curie temperature, BaTiO3, multilayers |
| 相關次數: | 點閱:108 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用射頻磁控濺鍍法在Pt/Ti/SiO2/Si的基板上交疊沉積(BaTiO3/BaSnO3)n 多層膜,藉由沉積時所產生的應力和材料間熱膨脹係數不同所產生熱應力,而這些應力作用在多層膜間產生應變,進而探討應變對於多層膜的結晶性、表面形貌和電性之影響。
實驗結果顯示,BaTiO3單層膜經過600 ℃以上熱處理10 min,可得正方晶結構,而多層膜則需更高的溫度才會有結晶的出現,可能是受到層間應力影響,致使晶粒微細。
薄膜疊層會引起較大應力,當堆疊4層時,薄膜表層厚度約60 nm,此時表面會出現裂縫。在總厚度不變的前提下,隨堆疊層數增加,表面層厚度減少,反而可維持高應力而沒有裂縫生成。
經由電滯曲線之量測,發現單層BaTiO3的居里溫度約為120 ℃,但多層結構在10 ℃的低溫下仍呈現順電性,代表多層技術可能降低居里溫度至室溫以下。經過C-V和I-V量測後,發現多疊層數2層時,擁有較高的介電常數和較低的漏電流密度。
In this study, (BaTiO3/BaSnO3)n multilayers are prepared by RF magnetron sputtering on Pt/Ti/SiO2/Si substrate. Structure of crystallization, surface morphology and electric properties are characterized as function of non-uniform strain which caused by depostition and thermal stress.
The results show that the structure of BaTiO3 thin film annealed above 600 ℃ for 10 min is perovskite tetragonal structure, but the crystal of multilayers find as annealed at a higher temperature should be caused by tiny grain size induced by strain. Crevices are found on the top layer for a 4 layers structure which maybe caused by internal stress. However, a thinner top layer can avoid crevices formation at high stress level.
By P-E measurement, the Curie temperature of BaTiO3 thin film is about 120 ℃. However, the Curie temperature of multilayers is lower than 10 ℃ because it shows paraelectric property at 10 ℃.
1. 汪建民,強介電陶瓷薄膜專題緒論,工業材料,107期,(1995) 44-48。
2. 黃文正、呂宗昕,強介電薄膜材料技術專題導言,工業材料,155期,(1999) 121。
3. J. Carrano, C. Sudhama, J. Lee, A. Tasch, W.H. Shepherd, and N. Abt, “Electrical and reliability properties of PZT thin films for ULSI DRAM applications,” IEEE Trans. Ultrasonics, Ferroelectrics Freq. Control 38 (1991) 690.
4. E. C. Subbarao, “A Family of Ferroelectric Bismuth Compounds,” J. Phys. Chem. Solids, 23(1962) 665-676.
5. C. H. Lu. and W. J.Hwang, “Phasic and Microstructural Developments of Pb(Ni1/3Nb2/3)O3 Prepared by The Columbite Precursor Process,” Ceramics International, 22 (1996) 373-379.
6. C. H. Lu. and W. J. Hwang, " Hydrothermal Synthesis and Dielectric Properties of Lead Nickel Niobate Ceramics,” J. J. Appl. Phys., 38 (1999) 5478.
7. J.T. Evans and R. Womack, “An Experiment a1 512-bit Nonvolatile Memory with Ferroelectric Storage Cell,” IEEE J. Solid State Circuits 23 (1988) 1171.
8. J.F. Scott and C.A. Paz de Araujo, “Ferroelectric memories,” Science, 246 (1989) 1400.
9. S. Dey and R. Zuleeg, “Integrated Sol-Gel PZT Thin-Films on Pt, Si, and GaAs for Non-Volatile Memory Applications,” Ferroelectrics ,108 (1990) 37.
10. C.A. Paz de Araujo, J.F. Scott, and O. Taylor (Eds.), “Ferroelectric Thin Films: Synthesis and Basic Properties,” Gordon and Breach, London, 1996.
11. N. Wakiya, J. K. Wang, A. Saiki, K. Shinozaki, and N. Mizutani, “Synthesis and Dielectric Properties of Ba1−xR2x/3Nb2O6 (R: rare earth) with Tetragonal Tungsten Bronze Structure,” J. Eur. Ceram. Soc., 19 (1999) 1071.
12. M. R. Raju and R. N. P. Choudhary, “Diffuse Phase Transition in Sr5RTi3Nb7O30 (R=La, Nd and Sm),” J. Phys. Chem. Solids, 64 (2003) 847.
13. X. M. Chen, Z. Y. Xu, and J. Li, “Dielectric Ceramics in The BaO-Sm2O3–TiO2-Ta2O5 Quaternary System,” J. Mater. Res., 15 (2000) 125.
14. J. J. Rubin, L.F. Van Uitert, and H.J. Levinstein, “The Growth of Single Crystal niobates for electro-optic and non-linear applications,” J. Cryst. Growth, 1 (1967) 315.
15. 陳怡誠,高介電薄膜簡介,Internet.
16. .S. Troutman, S. Bhattacharya, R. Tummala, and C. P. Wong, "Development of Low Viscosity, High Dielectric. Constant (K) Polymers for Integral Passive applications,” International Symposium on Advanced Packing Materials, (1999) 169-173.
17. A. H. M. Gonzalez, A. Z. Simoes, L. S. Cavalcante, E. Longo, J. A. Varela, and C. S. Riccardi, “Soft chemical deposition of BiFeO3 multiferroic thin films,” Appl. Phys. Lett., 90 (2007) 052906.
18. S. Ezhilvalavan and T. Y. Tseng, “Progress in The Developments of (Ba,Sr)TiO3 (BST) Thin Films for Gigabit Era DRAMs,” Mater. Chem. Phys., 65 (2000) 227–248.
19. P. Padmini, T. R. Taylor, M. J. Lefevre, A. S. Nagra, R. A. York, and J.S. Speck, “Realization of High Tunability Barium Strontium Titanate Thin Films by RF Magnetron Sputtering,” Appl. Phys. Lett., 75 (1999) 3186–3188.
20. K. Iijima, T. Terashima, Y. Bando, K. Kamigai, and H. Terauchi, “Atomic Layer Growth of Oxide Thin Films with Perovskite-Type Structure by Reactive Evaporation,” J. Appl. Phys., 72 (1992) 2840.
21. H. Tabata, H. Tanaka, and T. Kawai, “Formation of Artificial BaTiO3/SrTiO3 Superlattices Using Pulsed Laser Deposition and Their Dielectric Properties,” Appl. Phys. Lett. 65 (1994) 1970.
22. S.M. Nam, S. Mitarai, Y. Ishibashi, T. Tsurumi, and O. Fukunaga, “Fabrication of BaTiO3/SrTiO3 Artificial Superlattices by Atomic Layer Epitaxy and Their Dielectric Properties,” J. Korea Phys. Soc., 29 (1996) S632.
23. T. Tsurumi, T. Ichikawa, T. Harigai, H. Kakemoto, and S. Wada, “Dielectric and Optical Properties of BaTiO3/SrTiO3 and BaTiO3 /BaZrO3 Superlattices,” J. Appl. Phys., 91 (2002) 2284.
24. Takaaki Tsurumi, Takakiyo Harigai, Daisuke Tanaka, Hirofumi Kakemoto, and Satoshi Wada, “Anomalous Dielectric and Optical Properties in Perovskite-Type Artificial Superlattices,” Science and Technology of Advanced Materials, 5 (2004) 425–429.
25. H. Tabata, H. Tanaka, and T. Kawai, “Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties,” Appl. Phys. Lett., 65 (1994) 1970.
26. O. Nakagawara, T. Shimuta, T. Makino, S. Arai, H. Tabata, and T. Kawai, “Dependence of Dielectric and Ferroelectric Behaviors on Growth Orientation in Epitaxial BaTiO3/SrTiO3 Superlattices,” Vacuum, 66 (2002) 397–401.
27. 吳朗,電子陶瓷(介電),全欣資訊圖書,(1994) 12。
28. 吳朗,電子陶瓷(介電),全欣資訊圖書,(1994) 20-88。
29. N. Setter and E. L. Colla., “Ferroelectric Ceramic,” Birkhauser Verlag Basel, (1993) 213.。
30. 吳朗,電子陶瓷(介電),全欣資訊圖書,(1994) 161。
31. W. Wersing, “Hysteretic properties of ferroelectric ceramic,” Ber. Deut. Keram. Ges. 51 (1974) 318-323.
32. E. A. Little, “Dynamic Behavior of Domain Walls in Barium Titanate,” Phys. Rev., 98 (1967) 978-984.
33. W. R. Buessem, L. E. Cross, and A. K. Goswami, “Phenomenological Theory of High Permittivity in Coarse-Grains Barium Titanate,” J. Am. Ceram. Soc., 49 (1966) 33-36.
34. G. Arlt, D. Hennings, and G. Dewith, “Dielectric Properties of Fine-Grained Barium Titanate Ceramics,” J. Appl. Phys., 58 (1985) 1619-1625.
35. 吳朗,電子陶瓷(介電),全欣資訊圖書,(1994) 152-154。
36. H.F. Kay and P. Vousden, “Symmetry Changes in Barium Titanate at Low Temperatures and Their Relation to Its Ferroelectric Properties,” Phil. Mag., 7 (1949) 1019-1040.
37. G. Shirane, F. Jona, and R. Pepinsky, Proc. IRE., (1955)1738.
38. 魏烔權,“電工材料”,(1993) 214。
39. K. H. Yoon, J. H. Kim, K. H. Jo, H. I. Song, S. O. Yoon, and C. S. Kim, “Structural and Dielectric Studies in The (Ba0.9Ca0.1)(Ti1−xSnx)O3 ,” J. of Mat. Sci., 23 (1988) 61.
40. Grill, W. Kane, J. Viggiano, M. Brady, and R. Laibowitz, “Base Electrodes for High Dielectric Constant Oxide Materials in Silicon Technology,” Mater. Res., 7 (1992) 3260-3265.
41. Milton Ohring, “The Materials Science off Thin Films,” Academic Press, (1992) 129-131.
42. SVC Corporate Sponsors, “Historical Timeline of Vacuum Coating and Vacuum/Plasma Technology.”
43. 徐濱士,神奇的表面工程,清華大學出版社,(2000) 77。
44. 麻蒔立男著,陳克紹和曹永偉,薄膜技術,金文出版社,(1986) 102。
45. M. Harsdorff, “The Influence of Charged Point Defects and Contamination of Substrate Surfaces on Nucleation,” Thin Solid Film, 116 (1984) 55-74.
46. J. A. Thornton, “Influence of Apparatus Geometry and Deposition Conditions on The Structure and Topography of Thick Sputtered Coatings,” J. Vac. Sci. Technol., 11 (1974) 666.
47. O. Abe and Y. Taketa, “Effects of Substrate Thermal Expansion Coefficient on The Physicaland Electrical Properties of Thick Film Resistors,” Electronic Manufacturing Technology Symposium, 1989, Proceedings. Japan IEMT Symposium, Sixth IEEE/CHMT International.
48. S. G. Malhotra, Z. U. Rek, S. M. Yalisove, and J. C. Bilello, “Analysis Thin Film Stress Measurement Techniques,” Thin Solid Films, 301 (1997) 45-54.
49. 李正中,薄膜光學與鍍膜技術,藝軒書局,(1999) 277-279.
50. 羅吉宗,固態物理,滄海書局,(2007) 52。
51. D. E. Rase and R. Roy, “Phase equilibria in the system BaO-TiO2," J. Chem. Phys., 19 (1951) 33-40.
52. B. H. Tsao, R. L.C. Wu, S. F. Carr and J. A. Weimer, “The Effect of Oxygen on The Barium Titanate Film Capacitor,”Energy Conversion Engineering Conference, 1 (1997) 323-328.
53. J. A. Thornton, “Influence of Apparatus Geometry and Deposition Condition on the Structure and Topography of Thick Sputtered Coating,” J. Vac. Sci. Technol., 12 (1975) 830-835.
54. R. F. Pinizzotto, E. G. Jacobs, H. Yang, S. R. Sumerfelt, and B. E. Gnade, Mat. Res. Soc. Symp. Proc., 243 (1992) 463.
55. M. de keijser, G. J. M. Dormans, P. J. Van Veldnoven and D. M. deLeeuw, “Effects of crystallite size in PbTiO3 thin films,” Appl. Phys. Lett., 59 (1991) 3556.
56. K. Abe and S. Komatsu, “Epitaxial growth of SrTiO3 films on Pt electrodes and their electrical properties,” Jpn. J. Appl. Phys., 31 (1992) 2985-2988.
57. D. Roy and S. B. Krupanidhi, “Pulsed excimer laser ablated barium titanate thin films,” Appl. Phys. Lett., 61 (1992) 2057.
58. T. Horikawa, N. Mikami, T. Makita, J. Tanimura, M. Kataoka, K. Sato and M. Nunoshita, “Dielectric Properties of (Ba, Sr)TiO3 Thin Films Deposited by RF Sputtering,” Jpn. J. Appl. Phys., 32 (1993) 4126.
59. E. Wiener-Avnear, “Artificially Engineered Pyroelectric Sr1−xBaxTiO3 Superstructure Films,” Appl. Phys. Lett., 65 (1994) 1784.
60. Q. Liang and B. Xiaofang, “Microstructure and Grain Size Dependence of Ferroelectric Properties of BaTiO3 Thin Films on LaNiO3 Buffered Si,” Journal of the European Ceramic Society, 29 (2009) 1995–2001.
61. L. XH, Z. Sue, O. Ma and H. Fujlmoto, MRS Symp Proc, (1998) 516.
62. C. Zhou and D. M. Newns, “Intrinsic Dead Layer Effect and The Performance of Ferroelectric Thin Film Capacitors,” J. Appl. Phys., 82 (1997) 3081.
63. P. Li and T. M. Lu, “Conduction Mechanisms in BaTiO3 Thin Films,” Phys. Rev. B, 43 (1991) 14261.
64. W. Liu, J. Ko, and W. Zhu, “Asymmetric Switching Behavior of Ni/Pb1.1(Zr0.3Ti0.7)O3/Pt Thin Films”, Materials Letters, 49 (2001) 122-126.