| 研究生: |
吳奕寬 Wu, Yi-Kuan |
|---|---|
| 論文名稱: |
化學氣相沉積法在銅箔上合成石墨烯及相關分析 Chemical vapor deposition of graphene on copper and its analyses |
| 指導教授: |
曾永華
Tzeng, Yonhua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 石墨烯 、化學氣相沉積法 、雪花狀石墨烯 、大面積石墨烯 、銅晶格方向 、銅表面階梯狀 |
| 外文關鍵詞: | graphene, chemical vapor deposition (CVD), snow-flake graphene, large domain size graphene, crystal orientation of copper, step on copper surface |
| 相關次數: | 點閱:111 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯擁有許多優異的特性與條件,良好的光電特性、熱特性以及機械性質,在近年來成為相當熱門的研究材料。
在實驗中,主要以CVD熱化學氣相沉積法成長石墨烯,不只是成長高品質的連續面單層石墨烯薄膜,也在較低的壓力下成長出雪花形狀的石墨烯,經由改變製程參數可成長出單一晶粒大於500um大小的石墨烯,或成長出擁有許多奈米等級縫隙的石墨烯薄膜,並可將此雪花狀石墨烯的縫隙接合成一連續面單層石墨烯薄膜。
在後續分析中,根據SEM、EBSD、AFM影像,觀察了在不同晶格方向的銅表面所成長出的雪花狀石墨烯,發現石墨烯的形狀、成核、覆蓋程度、分支成長方向以及在覆蓋有石墨烯的銅表面上的階梯狀排列,都跟銅表面的晶格方向有所關係,此表示在石墨烯的成長上,不只是製程參數,如壓力、氣體流量、溫度等,會對其結果造成影響,銅的晶格方向也是影響石墨烯成長的重要原因之一。
此外,在實驗中也嘗試使用含碳氫聚合物的幫浦油氣成長石墨烯,並從實驗中觀察幫浦油氣對成長石墨烯的影響,以及在相同處理步驟下不同編號的銅箔成長石墨烯結果。
Graphene has many excellent features, such as good optical, thermal and mechanical properties, and it becomes a popular material in recent years.
In the experiment, we grow graphene by chemical vapor deposition process. We not only grow high quality single layer graphene, but also grow snow-flake graphene at lower pressure. By changing the parameters, we can grow large grain size graphene which was over 500um, and grow snow-flake graphene with nano-gaps. And the gaps of snow-flake graphene can be merged to grow continuous film.
After using scanning electron microscopy (SEM), electron-backscatter diffraction (EBSD), and atomic force microscope (AFM) to analysis graphene and copper, we observed snow-flake graphene growing on different copper crystals, and we found that the graphene shape, nucleation, coverage on copper, branch growth direction and the step on copper surface are related to the crystal orientation of copper surface. It means that CVD graphene growing on copper not only affect by the parameters such as pressure, gas flow rate, and temperature, but also crystal orientation of copper surface.
In addition, the experiment also used pump oil containing hydrocarbon polymer to grow graphene, and we also observed the effect of pump oil on graphene growth.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science(2004), vol.306, p.666-669, 2004.
[2] Singh V et al. , “Graphene based materials: Past, present and future,”
Progress in Materials Science(2011),Vol.56,issue 8,p.1178-1271,October
2011
[3] Xiaolin Li, Guangyu Zhang, Xuedong Bai, Xiaoming Sun, Xinran Wang, Enge
Wang, Hongjie Dai , “Highly conducting graphene sheets and
Langmuir–Blodgett films,” Nature Nanotechnology(2008), 3 (9), 538-542
[4] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, Ce´cile Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer ,”Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science(2006), vol. 312, pp. 1191-1196, May 26 2006.
[5] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, G. Martinez, “Epitaxial Graphene,” Solid State Communications, vol. 143, pp. 92-100, 2007.
[6] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S. S. Pei, “Graphene
segregated on Ni surfaces and transferred to insulators,” Appl. Phys. Lett.,
vol. 93, p.113103, 2008.
[7] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition,” Nano Letters(2009), vol. 9 (1), p. 30-35, 2009.
[8] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science(2009), vol. 324, p. 1312-1314, 2009.
[9] X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E.
Vogel, L. Colombo, R. S. Ruoff, “Large Area Graphene Single Crystals
Grown by Low Pressure Chemical Vapor Deposition of Methane on
Copper,” Journal of the American Chemical Society (2011), 133,
p.2816–2819, 2011.
[10] X. Li, W. Cai, I. Jung, J. An, D. Yang, A. Velamakanni, R. Piner, L.
Colombo, R. S. Ruoff, “Synthesis, Characterization, and Properties of
Large-Area Graphene Films,” ECS Transactions (2009), 19(5), p.41-52, 2009.
[11] Xuesong Li, Yanwu Zhu, Weiwei Cai .et al, “Transfer of Large-Area
Graphene Films for High-Performance Transparent Conductive
Electrodes,” Nano Letters (2009), vol. 9(12), p. 4359–4363, 2009.
[12]J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K.
Swan, B. B. Goldberg, R. S. Ruoff, “Transfer of CVD-Grown Monolayer
Graphene onto Arbitrary Substrates,” , ACS Nano (2011), vol. 5 (9),
p.6916-6924, 2011.
[13] Ariel Ismach, Clara Druzgalski, Samuel Penwell, Adam Schwartzberg,
Maxwell Zheng, Ali Javey, Jeffrey Bokor, Yuegang Zhang, “Direct chemical vapor deposition of graphene on dielectric surfaces,’ Nano Letters (2010), 10 (5), p. 1542-1548, 2010.
[14] Z. Y. Juang, C. Y. Wu, A. Y. Lu, C. Y. Su, K. C. Leou, F. R. Chen, C. H.
Tsai, “Graphene synthesis by chemical vapor deposition and transfer by a
roll-to-roll process,” Carbon (2010), 48, p. 3169-3174, 2010.
[15] Z. H. Ni, H. M. Wang, J. Kasim, H.M. Fan, T. Yu, Y. H. Wu, Y. P. Feng,
Z. X. Shen, “ Graphene thickness determination using reflection and
contrast spectroscopy,” Nano Letters (2007), vol. 7 (9), p.2758-2763, 2007.
[16] P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang et al.
“ Making graphene visible,” Applied Physics Letters (2007), 91,
063124 (2007), doi: 10.1063/1.2768624, 2007.
[17] I. Jung, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, S. Watcharotone, et al, “Simple approach for high-contrast optical imagingand characterization of graphene-based sheets,” Nano Letters (2007), 7, 3569, 2007.
[18] J. I. Paredes, S. Villar-Rodil, P. Soli’s-Ferna’ndez, A. Marti’nez-Alonso,
and J. M. D. Tascon, “Atomic Force and Scanning Tunneling Microscopy
Imaging of Graphene Nanosheets Derived from Graphite Oxide,” Langmuir
(2009), 25(10), p. 5957-5958, 2009.
[19] Çağlar Ö. Girit, Jannik C. Meyer, Rolf Erni, Marta D. Rossell, C.
Kisielowski, Li Yang, Cheol-Hwan Park, M. F. Crommie, Marvin L.
Cohen, Steven G. Louie, A. Zettl, “Graphene at the Edge:Stability and
Dynamics,” Science (2009), Vol. 323, no. 5922, pp. 1705 – 1708, 2009.
[20] Cristina Go´mez-Navarro, Jannik C. Meyer, Ravi S. Sundaram, Andrey
Chuvilin, Simon Kurasch, Marko Burghard, Klaus Kern, and Ute Kaiser,
“Atomic Structure of Reduced Graphene Oxide,” Nano letters (2010), 10 ,
p. 1144 – 1148, 2010.
[21] Jannik C. Meyer, C. Kisielowski, R. Erni, Marta D. Rossell, M. F.
Crommie, and A. Zettl, “Direct Imaging of Lattice Atoms and Topological
Defects in Graphene Membranes”, Nano letters (2008), Vol. 8 (11), p.3582
- 3586, 2008.
[22] L.M. Malard, M.A. Pimentaa, G. Dresselhaus, M.S. Dresselhaus, “Raman
spectroscopy in grapheme,” Physics Reports (2009), 473, p.51 – 87, 2009.
[23] Ivan Vlassiouk, Murari Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and
S. Smirnov, “Role of Hydrogen in Chemical Vapor Deposition Growth of
Large SingleCrystal Graphene,” ACS Nano (2011), vol. 5 (7),
p. 6069-6076, 2011.
[24] Chun-Chieh Lu, “Controlled Growth of Single-Layer and Double-Layer
Graphene Sheets on Patterned Silicon Wafers,” NTHU, 2009.
[25] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F.
Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim,
“Raman spectrum of graphene and graphene layers,” Physical review
Letters (2006), 97, 187401, 2006.
[26] L.M. Malarda , M.A. Pimentaa, G. Dresselhausb, M.S. Dresselhaus, “Raman spectroscopy in grapheme,” Physics Reports, 473 (2009), p. 51-87, 2009.
[27] X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, and R. S. Ruoff, “Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process,” Nano Letters (2010), 10, p.4328-4334.
[28] Ivan Vlassiouk, Murari Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, “Role of Hydrogen in Chemical Vapor Deposition Growth of Large SingleCrystal Graphene,” ACS Nano (2011), vol. 5 (7), p. 6069-6076, 2011.
[29] J. D. Wood, S. W. Schmucker, A. S. Lyons, E. Pop, and J. W. Lyding, “Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition,” Nano Lett. (2011), 11, p. 4547–4554, 2011.
[30] Lili Fan, Jie Zou, Zhen Li, Xiao Li, KunlinWang, JinquanWei, Minlin Zhong, Dehai Wu, Zhiping Xu, and Hongwei Zhu, “Topology evolution of graphene in chemical vapor deposition, a combined theoretical / experimental approach toward shape control of graphene domains,” Nanotechnology (2012), 23, 115605 (8pp), 2012.
[31]Xi Mi, Vincent Meunier, Nikhil Koratkar, Yunfeng Shi, “Facet-insensitive graphene growth on copper,” PHYSICAL REVIEW (2012), B 85, 155436 (2012).
[32]Kenjiro Hayashi, Shintaro Sato and Naoki Yokoyama, “Anisotropic graphene growth accompanied by step bunching on a dynamic copper surface,” Nanotechnology (2013), 24, 025603 (7pp), 2013.