簡易檢索 / 詳目顯示

研究生: 李政霖
Li, Zheng-Lin
論文名稱: 應用時間域邊界元素法解二維彈性動力問題
Solving some elastodynamic problems using time-domain boundary element methods
指導教授: 沈士育
Shen, Shih-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 71
中文關鍵詞: 邊界元素法基底裂縫問題
外文關鍵詞: boundry element method, bases, crack problem
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用在時間域上非直接的邊界元素法(BEM)解二維彈性動力問題。本方法經由Lame's Displacement potential求得Navier's Equation之特解,這些特解稱為基底(bases)。而邊界值問題的數值解則是基底之線性組合。利用semi-collocation method,隨時間的推進,將可推得線性組合的係數,而得其近似解。利用此方法解crack問題與Lamb's problem,並以C++程式語言來實作這些問題。在這些問題中,剪切力(shearing)的表現比張開力(opening)不穩定許多,並隨著取不同的常數p=△t/△x,也會影響到結果的穩定度,將取 p=0.4、0.5、0.8、1.0和1.2來討論,而crack problem 的結果亦會與解析解來作對比。

    An indirect time-domain boundry element method(BEM) is used to solve two-dimensional elastodynamic problems in this thesis. The stress and displacement fundamental solutions are derived by means of solving Lame's displacement
    potentials. The approximated solution is formulated as a linear combination of a set of bases.A semi-collocation method is used to derive the coefficient of the linear combination with time stepping and then deduces the approximated solution. The method is implemented to solve crack problem and Lamb's problem with C++ programming language. In these problems, the opening solution is stabler than the shearing solution. Taking different constants p=△t/△x also affects the stability of the problem and the problems take p=0.4、0.5、0.8、1.0 and 1.2 for comparison. The results of the crack problem compare with the exact solutions.

    第一章 序論 1 1.1 固體力學 1 1.2 彈性波 3 1.3 本文架構 4 第二章 相關理論背景與推導 5 2.1 應力張量 5 2.2 應變分析 8 2.3 虎克定律(Hooke's Law) 11 2.4 Navier's Equation 14 2.5 無限域之波傳性質 16 第三章 邊界元素法 19 3.1 邊界元素法(Boundry Element Method,BEM) 19 3.2 基底(Bases) 21 3.3 Lame Displacement Potential 28 第四章 數值方法與數值例 32 4.1 方法 32 4.2 crack problem 35 4.3Lamb's problem 51 4.4 static crack problem 62 第五章 結論與討論 64 參考文獻 67

    [1] 錢偉長,葉開源,彈性力學,科學出版社,1956
    [2] 吉田總仁,劉松柏,彈塑性力學基礎,五南圖書出版社,2008
    [3] A.E.H.Love,Mathematical Theory of Elasticity,Dover
    Publications,Inc.,New York,1944
    [4] S.D.Poisson,Me'moires de l'Acade'mie Royale de Sciences de l'Institut,Memoires Academie Science Paris,vol 8,pp.353-570,1829
    [5] S.D.Poisson,Addition au me'moire sur l'e'quilibre et le mouvement des Corps e'lastiques,Memoires Academie Science Paris,vol 8,pp.623-627,1829
    [6] E.Sternberg,On the integration of the equations of motion in the classical theory of elasticity,Archive for Rational Mechanics and Analysis,vol 6,pp.34-50,1960
    [7] G.Lame,"Lecons sur la Theorie Mathematique de l'Elasticite des Corps Solides", Bachelier,Paris,1852
    [8] Lord Rayleigh,"On waves propagated along the plane surface of an elastic solid", Proceedings of the London Mathematical Society,vol 17,pp.4-11,1887
    [9] H.Lamb,"On the Propagation of Tremors over the Surface of an Elastic Solid", Phil.Trans.R.Soc,vol 203,pp.1-42,1904
    [10] 楊桂通,張善元,彈性動力學,中國鐵道出版社,1988
    [11] Jose Pujol,Elastic Wave Propagation and Generation in Seismology,Cambridge University Press,2003
    [12] 殷正倫,聚焦波反射訊號之分析,國立成功大學應用數學研究所碩士論文, 台南,2010
    [13] Y.C.Fung,Foundations of Solid Mechanics,Prentice-Hall, Englewood Cliffs, NJ,1965
    [14] J.D.Achenbach,Wave Propagation in Elastic Solids, North-Holland Publishing Company, New York,1973
    [15] http://www.ndt.net/,Nondestructive Material Testing with Ultrasonics-Introduction to the Basic Principles.
    [16] http://www.physicsclassroom.com/,The Nature of a Wave, Physics Tutorial Lesson 1.
    [17] Karl F.Graff,Wave Motion in Elastic Solids, Columbus,Ohio State University Press,1975
    [18] E.Siebrits and S.L.Crouch,Two-dimensional elastodynamic
    displacement discontinuity method,International Journal of Numerical methods in Engineering, vol 37,pp.3229-3250,1994
    [19] Israil ASM and Banerjee PK,Advanced time-domain formulation of BEM for two-dimensional transient elastodynamics,International Journal of Numerical methods in Engineering, vol 29,pp.1421-1440,1990
    [20] Hills D.A.,Kelly P.A.,Dai D.N.and Korsunsky A.M.,Solution of crack problems : the distributed dislocation technique,Kluwer Academic Publishers,London,1996
    [21] Shih-Yu Shen,An indirect elastodynamic boundary element method with analytic bases,International Journal for Numerical Methods in Engineering, Chichester,Wiley 2003, vol 57,pp.767-794,2000
    [22] 涂智強,應用彈性動力邊界元素法模擬Lamb's 問題,國立成功大學應用數學研究所碩士論文,台南,2005

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE