| 研究生: |
張嘉益 Chang, Chia-Yi |
|---|---|
| 論文名稱: |
柴油引擎使用生質柴油排放氣膠微粒之多環芳香烴及其生物毒性研究 Polycyclic Aromatic Hydrocarbons and Cytotoxicity Analysis of Diesel Engine Exhaust Particles Using Biodiesels as Fuels |
| 指導教授: |
林達昌
Lin, Ta-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 生質柴油 、引擎微粒 、多環芳香烴 、生物毒性 |
| 外文關鍵詞: | cytotoxicity, biodiesel, diesel exhaust particle, PAHs, biotoxicity |
| 相關次數: | 點閱:159 下載:61 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用不同生質柴油進行柴油引擎排放微粒之化學及生物毒性特徵分析。測試引擎為柴油引擎掛載引擎動力計,燃料油品包含市售高級柴油、市售生質柴油及低摻配比例之棕櫚生質柴油。研究中將以上油品為柴油引擎的燃料,探討其排放微粒重量差異、微粒粒徑分布和多環芳香烴分析,最後再利用正常人類肺部支氣管上皮細胞株(BEAS-2B)進行細胞存活率(MTT assay)和基因毒性分析(Comet assay)之生物毒性測試,來深入了解引擎排放微粒粒徑大小和其生物毒性關係,並加以評估生質油品的使用對環境和人體的友善度,提供未來生質柴油的配方與施行做參考。
實驗採樣以十階微孔均勻沈積衝擊器進行引擎排放微粒分階採樣;在微粒排放濃度方面,當引擎轉速和負載提高時,均會造成微粒排放濃度的提高,且使用油品D所造成之微粒濃度皆為最低的,其次是使用油品B1,而使用油品B10產生的微粒濃度為最高;於引擎排放微粒粒徑分布結果顯示,使用油品 D、B1、B10所排放微粒粒徑大多小於 1.0 μm(約佔總重量 80%),且使用油品 B10會使粗粒徑微粒質量濃度增加,
引擎排放微粒中PAHs分析結果顯示,主要物種以具有三環至五環的PAHs化合物濃度較高;在微粒大小與PAHs濃度關係而言,以中粒徑(3.2~0.32 μm)和細粒徑(0.32~0.056 μm)微粒的PAHs貢獻度較高,而生質油品的添加比例會減少中粒徑微粒PAHs濃度比例,但會增加細粒徑PAHs濃度比例,代表生質柴油的添加確實會影響引擎的尾氣排放內容物。
細胞存活率的實驗結果顯示不論在任何轉速下,細胞毒性高低順序為B1 > B10 > D,而微粒的PAHs毒性當量大小亦為B1 > B10 > D,此兩項結果顯示引擎微粒的細胞毒性與PAHs毒性當量有明顯關係;而在微粒粒徑與其細胞存活率測試的結果顯示微粒粒徑與細胞毒性並無一致的關係。細胞基因毒性的結果顯示,在引擎不同轉速下,此三種油品的微粒基因毒性大小為D>B1>B10,且油品B10的微粒基因毒性幾乎與DMSO控制組相似,代表其不具有基因毒性,但使用市售柴油與市售生質柴油於引擎產生的微粒會對BEAS-2B細胞造成DNA損傷;而在微粒粒徑與基因毒性結果中發現引擎排放微粒粒徑大小與基因毒性並無明顯關係。
總結以上實驗結果,微粒粒徑大小與其生物毒性無關,但與燃料油品的選用有關。在使用油品B10排放的微粒質量濃度較高,且可能會造成引擎磨損,油品B10在PAHs的毒性當量是最低的,其微粒造成的細胞毒性和基因毒性亦最低,顯示低比例的棕櫚生質柴油添加確實能降低引擎微粒的生物毒性。
This study was aimed to investigate the characteristics of chemical toxicity and biotoxicity associated with diesel exhaust particles from biodiesels. A diesel engine connected to a dynamometer was used to generate diesel exhaust particles (DEP), which contained combustion products such as PAHs. The engine was tested using diesel fuel and biodiesel blends (1 and 10% of biodiesel by volume). The characteristics of the weight of the particulate emissions, particulate size distribution and polycyclic aromatic hydrocarbons (PAHs) concentrations were investigated. Finally, the normal human bronchial epithelial cells (BEAS-2B) were used for cell survival and toxicity tests to expound the correlation between the diesel particle size and its biological toxicity, and to further assess the impact of using biodiesel on the environment.
A micro-orifice uniform deposit impactor (MOUDI) was used to carry out the engine emissions of particulate sub-bands. The results of particulate emissions show that, raising the engine speed and the load would result in a decrease of the concentration of particulate emission. Also, using diesel resulted in the lowest particle concentration, followed by fuel B1, while fuel B10 produced the highest concentration of particulate emissions.
Analysis of PAHs indicates that the major species are three- to five-ringed PAHs. In terms of PAH concentrations vs. particle size, it is found that the fine sized (3.2 ~ 0.32 μm) and ultrafine sized (0.32 ~ 0.056 μm) particles contribute to a higher emission of PAHs. The addition of biomass may lower the concentrations of PAHs in the fine sized particles, while it increases those in ultrafine particles, implying that the addition of biodiesel will definitely affect the exhaust emissions from an engine.
Cell survival results show that at the tested engine speed, the order of the particle cytotoxicity are B1> B10> D, meanwhile, in terms of BaPeq the relative toxicity are also B1> B10> D. This coincidence implies that the cytotoxicity of particulate PAHs is well correlated to the toxicity equivalency quantity (TEQ). The cell viability results also showed that the particle size is not related to the cytotoxicity. Genotoxicity results show that under various engine speeds, the genotoxicity of particles is D> B1> B10, and the toxicity level for B10 is very close to the control group (DMSO), implying that B10 is not genotoxic, but the use of commercial diesel and biodiesel in the engine will generate particulates which may cause DNA damage. It was also found that there is no clear relationship between particle size and genotoxicity.
To sum up the conclusion, the toxicity of the exhaust depends on the difference of the fuel, not on the particle size in the exhaust particle. B10 products a higher concentration of emissions than the other fuels, and may cause engine wear. B10 has the lowest toxicity equivalency quantity (BaPeq) among all the tested fuels; it also generated particles with the lowest cytotoxicity and genotoxicity. In other words, adding a low ratio (such as 10%) of palm biodiesel will reduce the biological toxicity of particles in the exhaust.
Albini, A., Sporn, M.B., 2007. The tumour microenvironment as a target for chemoprevention. Nature Reviews Cancer 7, 139-147.
2. Baker, J., Forter, E., Eisenreich, S.J., 1989. PCBs and PAHs as Trace of Particle Dynamics in Large Lakes. Journal of Great Lake Research 15.
3. Board, N.B., 2006. Biodiesel Production.
4. Bunger, J., Krahl, J., Franke, H.U., Munack, A., Hallier, E., 1998. Mutagenic and cytotoxic effects of exhaust particulate matter of biodiesel compared to fossil diesel fuel. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 415, 13-23.
5. Buzorius, G., Hameri, K., Pekkanen, J., Kulmala, M., 1999. Spatial variation of aerosol number concentration in Helsinki city. Atmospheric Environment 33, 553-565.
6. Correa, S.M., Arbilla, G., 2005. Formaldehyde and acetaldehyde associated with the use of natural gas as a fuel for light vehicles. Atmospheric Environment 39, 4513-4518.
7. Dockery, D.W., Pope, C.A., Xu, X.P., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G., Speizer, F.E., 1993. An Association between Air-Pollution and Mortality in 6 United-States Cities. New England Journal of Medicine 329, 1753-1759.
8. Donaldson, K., Li, X.Y., Macnee, W., 1998. Ultrafine (nanometre) particle mediated lung injury. Journal of Aerosol Science 29, 553-560.
9. Durbin, T.D., Collins, J.R., Norbeck, J.M., Smith, M.R., 2000. Effects of biodiesel, biodiesel blends, and a synthetic diesel on emissions from light heavy-duty diesel vehicles. Environmental Science & Technology 34, 349-355.
10. Durbin, T.D., Norbeck, J.M., 2002. Effects of biodiesel blends and ARCO EC-diesel on emissions from light heavy-duty diesel vehicles. Environmental Science & Technology 36, 1686-1691.
11. Dybdahl, M., Risom, L., Bornholdt, J., Autrup, H., Loft, S., Wallin, H., 2004. Inflammatory and genotoxic effects of diesel particles in vitro and in vivo. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 562, 119-131.
12. Halinen, A.J., Komulainen, H., Salonen, R.O., Ruotsalainen, M., Hirvonen, M.R., 1999. Diesel particles induce nitric oxide production in murine alveolar macrophages and rat airways. Environmental Toxicology and Pharmacology 7, 11-18.
13. Holder, A., Lucas, D., Goth-Goldstein, R., Koshland, C.P., 2008. Cellular response to diesel exhaust particles strongly depends on the exposure method (vol 103, pg 108, 2008). Toxicological Sciences 104, 234-234.
14. Hsiao, W.L.W., Mo, Z.Y., Fang, M., Shi, X.M., Wang, F., 2000. Cytotoxicity of PM2.5 and PM2.5-10 ambient air pollutants assessed by the MTT and the Comet assays. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 471, 45-55.
15. Hughes, L.S., Cass, G.R., Gone, J., Ames, M., Olmez, I., 1998. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environmental Science & Technology 32, 1153-1161.
16. Kittelson, D.B., 1998. Engines and nanoparticles: A review. Journal of Aerosol Science 29, 575-588.
17. Kleeman, M.J., Schauer, J.J., Cass, G.R., 2000. Size and composition distribution of fine particulate matter emitted from motor vehicles. Environmental Science & Technology 34, 1132-1142.
18. Knudsen, L.E., Gaskell, M., Martin, E.A., Poole, J., Scheepers, P.T.J., Jensen, A., Autrup, H., Farmer, P.B., 2005. Genotoxic damage in mine workers exposed to diesel exhaust, and the effects of glutathione transferase genotypes. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 583, 120-132.
19. Krahl, J., Knothe, G., Munack, A., Ruschel, Y., Schroder, O., Hallier, E., Westphal, G., Bunger, J., 2009. Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels. Fuel 88, 1064-1069.
20. Lapuerta, M., Armas, O., Rodriguez-Fernandez, J., 2008. Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science 34, 198-223.
21. Lehmann, U., Niemela, V., Mohr, M., 2004. New method for time-resolved diesel engine exhaust particie mass measurement. Environmental Science & Technology 38, 5704-5711.
22. Leonardi, A., Burtscher, H., Siegmann, H.C., 1993. Size-Dependent Measurement of Aerosol Photoemission from Particles in Diesel Exhaust (Reprinted from Atmospheric-Environment, Vol 26a, Pg 3287-3290, 1992). Atmospheric Environment Part a-General Topics 27, 1251-1254.
23. Li, C.S., Lin, W.H., Jenq, F.T., 1993. Characterization of Outdoor Submicron Particles and Selected Combustion Sources of Indoor Particles. Atmospheric Environment Part B-Urban Atmosphere 27, 413-424.
24. Lin, T.C., Chao, M.R., 2002. Assessing the influence of methanol-containing additive on biological characteristics of diesel exhaust emissions using microtox and mutatox assays. Science of the Total Environment 284, 61-74.
25. Lin, T.C., Yang, C.R., Chang, F.H., 2007. Burning characteristics and emission products related to metallic content in incense. Journal of Hazardous Materials 140, 165-172.
26. Lin, Y.C., Tsai, C.H., Yang, C.R., Wu, C.H.J., Wu, T.Y., Chang-Chien, G.P., 2008. Effects on aerosol size distribution of polycyclic aromatic hydrocarbons from the heavy-duty diesel generator fueled with feedstock palm-biodiesel blends. Atmospheric Environment 42, 6679-6688.
27. Lowenthal, D.H., Zielinska, B., Chow, J.C., Watson, J.G., Gautam, M., Ferguson, D.H., Neuroth, G.R., Stevens, K.D., 1994. Characterization of Heavy-Duty Diesel Vehicle Emissions. Atmospheric Environment 28, 731-743.
28. Menzie, C.A., Potocki, B.B., Santodonato, J., 1992. Exposure to Carcinogenic Pahs in the Environment. Environmental Science & Technology 26, 1278-1284.
29. Morawska, L., Thomas, S., Bofinger, N., Wainwright, D., Neale, D., 1998. Comprehensive characterization of aerosols in a subtropical urban atmosphere: Particle size distribution and correlation with gaseous pollutants. Atmospheric Environment 32, 2467-2478.
30. Morin, J.P., Fouquet, F., Monteil, C., Le Prieur, E., Vaz, E., Dionnet, F., 1999. Development of a new in vitro system for continuous in vitro exposure of lung tissue to complex atmospheres: Application to diesel exhaust toxicology. Cell Biology and Toxicology 15, 143-152.
31. Nisbet, I.C.T., Lagoy, P.K., 1992. Toxic Equivalency Factors (Tefs) for Polycyclic Aromatic-Hydrocarbons (Pahs). Regulatory Toxicology and Pharmacology 16, 290-300.
32. Oberdörster, G., 2001. Pulmonary effects of inhaled ultrafine particles International Archives of Occupational and Environmental Health 74, 8.
33. Oberdorster, G., Ferin, J., Gelein, R., Soderholm, S.C., Finkelstein, J., 1992. Role of the Alveolar Macrophage in Lung Injury - Studies with Ultrafine Particles. Environmental Health Perspectives 97, 193-199.
34. Ramdahl, T., Alfheim, I., Rustad, S., Olsen, T., 1982. Chemical and Biological Characterization of Emissions from Small Residential Stoves Burning Wood and Charcoal. Chemosphere 11, 601-611.
35. Renwick, L.C., Donaldson, K., Clouter, A., 2001. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicology and Applied Pharmacology 172, 119-127.
36. Ryan, J.J., Arb, J.D., Ament, P.A., 2000. Supplementary WMS-III tables for determining primary subtest strengths and weaknesses. Psychological Assessment 12, 193-196.
37. Savi, M., Kalberer, M., Lang, D., Ryser, M., Fierz, M., Gaschen, A., Ricka, J., Geiser, M., 2008. A novel exposure system for the efficient and controlled deposition of aerosol particles onto cell cultures. Environmental Science & Technology 42, 5667-5674.
38. Schwartz, J., 1991. Air pollution and daily mortality in Philadelphia. Presented at the 1991 Meeting of the American Lung Association.
39. Trier, A., 1997. Submicron particles in an urban atmosphere: A study of optical size distributions .1. Atmospheric Environment 31, 909-914.
40. Tyson, K.S., McCormick, R.L., 2001. Biodiesel Handling and Use Guidelines.
41. W.C., H., 1999. Properties, Behavior, and Measurement of Airborne Particles (2nd Edition ed.). Aerosol Technology.
42. Zhao, H.W., Barger, M.W., Ma, J.K.H., Castranova, V., Ma, J.Y.C., 2006. Cooperation of the inducible nitric oxide synthase and cytochrome P450 1A1 in mediating lung inflammation and mutagenicity induced by diesel exhaust particles. Environmental Health Perspectives 114, 1253-1258.
43. Zhao, Y., Usatyuk, P.V., Gorshkova, I.A., He, D., Wang, T., Moreno-Vinasco, L., Geyh, A.S., Breysse, P.N., Samet, J.M., Spannhake, E.W., Garcia, J.G.N., Natarajan, V., 2009. Regulation of COX-2 Expression and IL-6 Release by Particulate Matter in Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology 40, 19-30.
44. 台灣綜合研究院, 2007. 國際生質柴油推展之初步探討. 石油市場雙週報.
45. 行政院交通部, 2009. 台灣車輛登記總數.
46. 行政院衛生署, 2009a. 歷年主要死亡原因死亡人數.
47. 行政院衛生署, 2009b. 歷年癌症主要死亡原因死亡人數.
48. 李芝珊, 2005. 奈米微粒生物特性評估. 行政院國家科學委員會.
49. 康照洲, 2005. 機車排放懸浮微粒對細胞黏附因子表現之影響及其機制之探討. 行政院國家委員會.
50. 黃柏舜, 2008. 柴油引擎發電機使用生質柴油所排放醛酮類化合物及排氣毒性分析
51. 國立成功大學環境工程學系碩士論文.
52. 詹長權, 1998. 大氣微粒毒性研究. 環保署環保科技研究計畫.
53. 詹長權、鄭尊仁, 2001. 大氣微粒毒性研究. 行政院國家科學委員會.
54. 趙木榮, 2001. 螢光菌對空氣中半揮發性有機物之毒性測試方法建立及其應用. 國立成功大學環境工程系博士論文.
55. 劉育穎, 2008. 生質柴油於引擎排氣之有害空氣污染物及生物毒性研究. 國立成功大學環境工程系博士論文.
56. 環訓所, 2008. 空污專責人員訓練教材.