簡易檢索 / 詳目顯示

研究生: 黃騰緯
Huang, Teng-Wei
論文名稱: 自動化生產對結晶矽太陽能電池良率上的影響
The Influence of Automatic Production on the Yields of the Solar Cells
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 50
中文關鍵詞: 太陽能電池良率自動化生產光伏特效應
外文關鍵詞: Solar Cells, Yield, Automation Production, Photovoltaic Effect
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為增進太陽能電池整體的經濟效益,必須有系統且穩定地生產。除了規格必須符合各項國際標準以外,良率(Yield)也是很重要的考量。本論文探討自動化生產對太陽能電池良率之影響。研究中以一組IRB 120機器人來連結傳統太陽能製程,精確控制晶片位置(位置重複性達0.1mm)。研究中以兩個實驗組(自動生產之Stack方式與Slot方式)與對照組(傳統人工生產)比較各項指標(包括Shunt Resistance、Fill Factor、Efficiency、Yield等)。研究結果顯示,自動生產與傳統人工生產之太陽能電池之Efficiency與Fill Factor持平,然而良率部分有明顯之增加,這對於大量生產之產業,可增加可觀之收益,值得進一步研究持續增加良率並推廣自動化生產方法。另外,本研究中以光致螢光(Photoluminescence; PL)及電致螢光(Electroluminescence; EL)方法進行太陽能電池缺陷檢測,用以說明各種可能產生漏電的原因、位置、及如何防止漏電。在未來可控制蝕刻深度以生產較高性能的太陽電池。

    In order to imporve the economical benefit of the solar cells, systematic and stable productions are important. The productions must fit the international standard and the yield of the cells is also an important consideration. In this paper, the influence of automation production on the yields of the solar cells is studied. A set of irb 120 robot was used to connect the conventional processes and control the precision position (position repeatability is 0.01mm). In this study, two experimental groups (stack way and slot way with automatic production) and one control group were used to compare the shunt resistance, fill factor, efficiency, and yields. The results show that the yields were improved apparently when the automatic production has been adopted instead of the conventional way of production. Furthermore, Photoluminescence (PL) and Electroluminescence (EL) ways were used to detect the defections of the solar cells to illustrate the causes of the current leakage. In future, the isolation depth will be increased to produce the solar cells with higher performance by preventing the current leakage for the solar cells.

    中文摘要…………………………………………………………………..I Abstract…………………………………………………………………….II 誌謝……………………………………………………………………… III 目錄………………………………………………………………………..IV 圖目錄……………………………………………………………………..VI 第一章 緒論………………………………………………………………1 第一節 太陽能電池簡介……………………………………………1 1.1.1傳統太陽能電池之製造……………….....………………1 1.1.2太陽能電池之原理……………...………………………..2 1.1.3太陽能電池之缺陷…………...………………..…………4 1.1.4 Shunts………...………………..…………………………4 1.1.5逆向電流(Reverse Current) …………………………...…5 1.1.6 Hot Spot………………………..………………….. ……. 6 1.1.7太陽電池破壞失效…………………………..………….. 6 1.1.8太陽能電池之效率…………..………………………….. 6 第二節 太陽能電池自動化生產…………………………………… 7 1.2.1Texuring製程……………………….......………………… 7 1.2.2磷擴散(Phosphorous Diffusion) …………………………8 1.2.3 Edge Isolation…………..………………………………...10 1.2.4 SiNx AR Coating………………………….……………...12 1.2.5 Printing & Firing………………………..………………..13 1.2.6燒結製程………………………………………………… 14 第三節 太陽電池之檢測……………………………………………15 1.3.1光致發光(Photoluminescence; PL)檢測…………….…... 16 1.3.2電致發光(Electroluminescence; EL)檢測………………. 17 第四節 研究目的…………………………………………………… 17 第二章 實驗設備與研究方法…………………………………………… 18 第一節 太陽能電池製程設備……………………………………… 18 2.1.1 Texturing設備……………….……………...…………… 18 2.1.2磷擴散(Diffusion)設備………..………………………….19 2.1.3 Edge isolation蝕刻設備……..……….…………………....24 2.1.4 PC抗反射塗層(ARC, Anti-Reflective Coating)設備…….24 2.1.5 PT及燒結設備………………....……..……..…………… 28 第二節 檢測設備…….………………….……...………..……….....30 2.2.1 PL檢測設備………..…………..……...………..………… 30 2.2.2 EL檢測設備………..………………………...…..……….. 31 第三節 研究方法…………………………….....…………………... 31 2.3.1檢測(量測)步驟………………………...….....…………….32 第三章 結果與討論……………….………………………...…………… 33 第一節 實驗結果……………………………………….….……….. 33 第四章 結論、建議與未來工作…..…………….…………….…………42 第一節 結論………………………………………………………… 42 第二節 建議與未來工作………………...…………………………. 42 參考文獻……………………………………………………………... ….. 44 附錄 附錄一 實驗與對照組比較之Rsh分布圖……………………………….48 附錄二 Rsh之量測……………………………...………………………… 49

    林士傑,2003,低溫多晶矽之製作與特性分析,國立中央大學光電科學研究所碩士論文。
    陳璟旻,2008,金屬誘發多晶矽結晶之材料特性研究,國立成功大學航空太空工程學系碩士論文。
    謝尚潔、楊涵茵、林楷倫、李豐穎,2007,從物理化學觀點看綠色能源:以多晶矽太陽能電池矽基板製造技術為例,Chinese Chemical Society, Taipei, December, Vol. 65, No. 4, pp. 463-474.
    蔡進譯,超高效率太陽電池從愛因斯坦的光電效應談起,2005,物理雙月刊(廿七卷五期)。
    張智閔,利用電沉積方法製備CIS太陽能電池結構,2007,國立成功大學化學研究所碩士論文。
    李爭、任志平,太陽電池片燒結爐的設計及其關鍵性能探討,2007,太陽能(SOLAR ENERGY)。
    Yao Zhaohui, Liao Hua, Li Jingtian, Shen Lanxian, Ma Xun, Tu Jielei, Liu Zuming. 2010. Preparation techniques of selective emitter for solar cell application, 中国科技论文在线, Valencia.
    In-line Texture and TPR Wet Bench, 均豪精密工業股份有限公司。
    Libal J., S. Novaglia, M. Acciarri, S. Binetti, R. Petres, J. Arumughan, R. Kopecek, A. Prokopenko. 2008. Effect of Compensation and of Metallic Impurities on the Electrical Properties of Cz-Grown Solar Grade Silicon.
    Teixeira R.C., I. Doi, M.B.P. Zakia, J.A. Diniz, J.W. Swart, 2004. Micro-Raman stress characterization of polycrystalline silicon films grown at high temperature, Materials Science and Engineering B 112.160–164.
    Clinton D., V. Siclen. 2006. Intergranular fracture in model polycrystals with correlated distribution of low-angle grain boundaries.
    Hidalgo., O. Palais, S. Martinuzzi. 2004. Behaviour of metallic impurities at grain boundaries and dislocation clusters in multicrystalline silicon wafers deduced from contactless lifetime scan maps, J. Phys.: Condens. Matter 16 S19–S24.
    Watanabe T., K. Kido, S. Tsurekawa, K. Kawahara. 2007. A New Approach to Grain Boundary Engineering for Photovoltaic Polysilicon by Unidirectional and Rotational Solidification, Materials Science Forum Vols. 558-559 .843-850.
    Breitenstein O., J. P. Rakotoniaina, M. H. Al Rifai, M. Werner. 2004. Shunt Types in Crystalline Silicon Solar Cells, PROGRESS IN PHOTOVOLTAICS, RESEARCH AND APPLICATIONS, Prog. Photovolt: Res. Appl. 12. 529–538.
    Yang H., H. Wang, M. Wang. 2012. Investigation of the relationship between reverse current of crystalline silicon solar cells and conduction of bypass diode, International Journal of Photoenergy, Volume, Article ID 357218, 5 pages doi:10.1155/2012/357218
    Kyeong D., M. Gunasekaran, K. Kim, H. Kim, T. Kwon, I. Moon, Y. Kim , K. Han. 2009. Laser Edge Isolation for High-efficiency Crystalline Silicon Solar Cells, Journal of the Korean Physical Society, Vol. 55, No. 1, July. 124-128.
    Thei K. B., H. M. Chuang, S. F. Tsai, C. T. Lu, W. C. Liu. Characteristics of Polysilicon Resistors for Sub-Quar ter Micron CMOS Applications.
    Bauer J., J.M. Wagner, A. Lotnyk, H. Blumtritt, B. Lim, J. Schmidt, O. Breitenstein. 2009. Hot spots in multicrystalline solar cells avalanche breakdown due to etch pits, Phys. Status Solidi RRL 3, No. 2, 40–42 / DOI 10.1002/pssr.200802250.
    Breitenstein O., J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.M. Wagner, W. Warta. 2011. Understanding junction breakdown in multicrystalline solar cells, APPLIED PHYSICS REVIEWS—FOCUSED REVIEW.
    Etgar L. 2013. Semiconductor Nanocrystals as Light Harvesters in Solar Cells Materials, 6, 445-459; doi:10.3390/ma6020445, Review.
    Keithle. Electrical Characterization of Photovoltaic Materials and Solar Cells with the Model 4200-SCS Semiconductor Characterization System I‑V, C‑V, C-f, DLCP, Pulsed I-V, Resistivity, and Hall Voltage Measurements”, Number 3026, Application Note Series
    Bucher E., J. Boneberg. 2011. Aluminum-Silicon Contact Formation Through Narrow Dielectric Openings.
    Hudelson S., Y. S. Lee, K. Hartman, B. Lai, Z. Cai, M. A. Marcus, T. Buonassisi. 2008. EVOLUTION OF METAL IMPURITIES DURING CRYSTALLINE SILICON SOLAR CELL PROCESSING, IEEE.

    Focsa, A. Slaoui, S. Schmitt, F. de Moro, E. Jolivet, C. Belouet, E. Van Kerschaver, J. Robbelein. 2009. GETTERING EFFECTS AND FG ANNEALING ON THIN RST RIBBON SILICON SOLAR CELLS, 24th European Photovoltaic Solar Energy Conference, 21-25, Hamburg, Germany.
    Amir D.S., M. Steyera, G. Micarda, H. Wagnerb, P.P. Altermattb, G. Hahna. 2013., Relationships between diffusion parameters and phosphorus precipitation during the POCl3 diffusion process, Energy Procedia 28 000–000, SiliconPV: March 25-27, 2013, Hamelin, Germany.
    Hyomin Park, Sung Ju Tark, Chan Seok Kim, Sungeun Park, Young Do Kim, Chang-Sik Son, Jeong Chul Lee, and Donghwan Kim, “Effect of the Phosphorus Gettering on Si Heterojunction Solar Cells”, International Journal of Photoenergy Volume 2012, Article ID 794876, 7 pages doi:10.1155/2012/794876
    Graf S., J. Junge, S. Seren, G. Hahn. 2010. EMITTER OPTIMIZATION FOR MONO- AND MULTICRYSTALLINE SILICON: A STUDY OF EMITTER SATURATION CURRENTS, Preprint 25th EU PVSEC, 06-10, Valencia.
    Abburi M., T. Boström, I. Olefjord. 2009. Electrochemical texturing of multicrystalline silicon wafers in alkaline solutions, 24th European Photovoltaic Solar Energy Conference, 21-25, Hamburg, Germany.
    Hauser A., I. Melnyk, P. Fath, S. Narayanan, S. Roberts, T. M. Bruton. 2003. A SIMPLIFIED PROCESS FOR ISOTROPIC TEXTURING OF MC-SI, WCPEC-3, 11-18, 4P-C4-33.
    Petersson A. M. , D. Chithambaranadhan, Q. Nguyen, R. Goldberg, T. Lommasson, T. Boström. 2010. Shunt Isolation in Silicon Solar Cells by Chemical Etchin, 25th European Photovoltaic Solar Energy Conference, 6-9 September, Valencia, Spain.
    EDWARDS M. B. 2008. Screen and Stencil Print Technologies for Industrial N-Type Silicon Solar Cells, A thesis submitted to the University of New South Wales, in fulfilment of the requirements for the degree of Doctor of Philosophy.
    Yao, G. 2005. High Efficiency Metal Stencil Printed Silicon Solar Cells, submitted to the University of New South Wales in fulfilment to the requirement of the degree of doctor of Philosophy.
    Trupke T., R. A. Bardos, M. C. Schubert, W. Warta. 2006. Photoluminescence imaging of silicon wafers, APPLIED PHYSICS LETTERS 89, 044107, American Institute of Physics. DOI: 10.1063/1.2234747.
    Augarten Y., M. D. Abbott, T. Trupke, R. Bardos, H. P. Hartmann, R. Gupta, J. Bauer, O. Breitenstein. 2007. DETECTION AND ISOLATION OF LOCALISED SHUNTS IN INDUSTRIAL SILICON SOLAR CELLS USING PL IMAGING, 22nd European Photovoltaic Solar Energy Conference, 3-7, Milan, Italy, September.
    Sugimura E., S. Takamoto, S. Tsujii, K. Hirata, A. Tani, T. Fuyuki. 2012. Spatially Resolved Electroluminescence Imaging of Shunt Sources in Crystalline Silicon Solar Cells, Japanese Journal of Applied Physics 51, 10NA02.
    Tempress. 2004. Tempress systems Inc. Furnace Manual, M320-01, January.
    Centrotherm. 2009. Centrotherm PECVD. Technical Description System Description 17.6.
    http://www.abb.com/robotics

    無法下載圖示 校內:2019-02-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE