| 研究生: |
簡崇宇 Chien, Tsung-Yu |
|---|---|
| 論文名稱: |
利用聚3-己烷基噻吩(P3HT)及P3HT/金奈米粒子修飾染料敏化太陽能電池的TiO2光電極 Modification of TiO2 Photoelectrodes by Poly-3-hexylthiophene (P3HT) and P3HT/Au Nanoparticles for Dye-Sensitized Solar Cells Applications |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 染料敏化太陽能電池 、界面修飾 、聚3-己烷基噻吩 、奈米複合材料 、局部表面電漿共振效應 |
| 外文關鍵詞: | Dye-sensitized solar cells, Interface modification, Poly-3-hexylthiophene, Nanocomposites, Localized surface plasmon resonance effect |
| 相關次數: | 點閱:95 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在染料敏化太陽能電池(DSSC)的操作中,二氧化鈦(TiO2)光電極與電解液界面間的電荷再結合是影響電池效率的重要因素。為了降低此界面間的電荷再結合,本研究利用聚3-己烷基噻吩(P3HT)來修飾TiO2光電極, 藉由其疏水且為P型高分子之特性來抑制光電極上的電子與電解液中陽離子的再結合行為。本研究首先藉由旋轉塗佈製程來引入P3HT修飾層,元件效率可由8.33%提升至8.43%。此外,若利用吸附-脫附製程可以有效調控P3HT的沉積量,發揮P3HT的效應,進而提升整體元件的吸光能力,使得電流密度上升,電池效能也將進一步由8.30%提升至8.66%。此外,本研究亦利用金屬奈米粒子與受體間所產生的耦合效應(Coupling effect),藉由金屬奈米粒子與入射光所產生的局部表面電漿子共振效應來增進電池的吸光能力。然而因金奈米粒子在碘電解液中不穩定,因此,此一研究利用P3HT與金之間的強吸附力,以P3HT包覆金奈米粒子,製備奈米金複合材料(Au@P3HT),以降低碘離子對金奈米粒子的腐蝕效應。研究中以油水兩相反應分離的程序來製備此奈米金複合材料(Au@P3HT)。研究結果顯示,不論Au@P3HT是以旋轉塗佈或是吸附製程來修飾光電極,皆可大幅提升IPCE中的光譜響應,使得DSSC之電流密度上升。然而,相比於旋轉塗佈製程,以吸附製程所製備的元件具有較穩定的填充因子數值,因此,電池效率可由8.36% 提升至 8.94%。
關鍵字:染料敏化太陽能電池、界面修飾、聚3-己烷基噻吩、奈米複合材料、局部表面電漿共振效應
In the operation of dye-sensitized solar cells (DSSC), the charge recombination from titanium dioxide (TiO2) photoelectrode to the electrolyte plays as an important factor. To improve the charge recombination effect, a hydrophobic P-type polymer, P3HT, was used to modify the photoelectrode, acting as a blocking layer to increase the charge recombination resistance (Rct), inhibit the electron recombination. Therefore, the efficiency can increase from 8.33% to 8.43% by introducing P3HT into TiO2 photoelectrode via spin coating process. Additionally, utilize the adsorption-desorption method can control the deposition amount of P3HT, let the performance can be increased from 8.30% to 8.66% by current density increasing due to visible sensitive property. Moreover, this study also utilize the coupling effect between metal nanoparticles (NPs) and acceptor, enhancing the light absorption of the devices via localized surface plasmon resonance effect (LSPR). Therefore, based on the P3HT and Au have a strong interaction, P3HT can act as a protective ligands which capped on the gold surface to avoid the iodide/triiodide corrosion. In the research results of Au and P3HT nanocomposites (Au@P3HT), which be synthesized by oil/water reaction-separation process, applying spin-coating or adsorption method, both can enlarge the IPCE response and improve the current density. Compared to spin-coating method, the adsorption method has more stable fill factor, let the conversion efficiency increase from 8.36% to 8.94%.
Key words: Dye-sensitized solar cells, Interface modification, Poly-3-hexylthiophene, Nanocomposites, Localized surface plasmon resonance effect
1. Kroeze, J.E., N. Hirata, S. Koops, M.K. Nazeeruddin, L. Schmidt-Mende, M. Gratzel, and J.R. Durrant, Alkyl chain barriers for kinetic optimization in dye-sensitized solar cells. Journal of the American Chemical Society, 2006. 128(50): p. 16376-16383.
2. Cao, Y.M., Y.H. Liu, S.M. Zakeeruddin, A. Hagfeldt, and M. Gratzel, Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics. Joule, 2018. 2(6): p. 1108-1117.
3. Liu, Y.F., K. Krug, and Y.L. Lee, Self-organization of two-dimensional poly(3-hexylthiophene) crystals on Au(111) surfaces. Nanoscale, 2013. 5(17): p. 7936-7941.
4. Tsubomura, H., M. Matsumura, Y. Nomura, and T. Amamiya, Dye Sensitized Zinc Oxide: Aqueous Electrolyte: Platinum Photocell. Nature, 1976. 261: p. 402-403
5. O’Regan, B. and M. Grätzel, A Low-cost, High-efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 1991. 353: p. 737-739.
6. Pandikumar, A., S.-P. Lim, S. Jayabal, N.M. Huang, H.N. Lim, and R. Ramaraj, Titania@gold plasmonic nanoarchitectures: An ideal photoanode for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2016. 60: p. 408-420.
7. Grätzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1-3): p. 3-14.
8. Gratzel, M., Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry, 2005. 44(20): p. 6841-6851.
9. Hagfeldt, A., G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells. Chemical Reviews, 2010. 110: p. 6595-6663.
10. Kuo, Y.-Y. and C.-H. Chien, Sinter-free transferring of anodized TiO2 nanotube-array onto a flexible and transparent sheet for dye-sensitized solar cells. Electrochimica Acta, 2013. 91: p. 337-343.
11. Weerasinghe, H.C., P.M. Sirimanne, G.V. Franks, G.P. Simon, and Y.B. Cheng, Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010. 213(1): p. 30-36.
12. Ito, S., N.L. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Pechy, M.K. Nazeeruddin, and M. Gratzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem Commun (Camb), 2006(38): p. 4004-6.
13. Grätzel, M., Photoelectrochemical Cells. Nature, 2001. 414: p. 338-344.
14. Feng, X., K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, and C.A. Grimes, Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications. Nano Letter, 2008. 8: p. 3781-3786.
15. Jiu, J., S. Isoda, F. Wang, and M. Adachi, Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film. The Journal of Physical Chemistry B, 2006. 110: p. 2087-2092.
16. Hagfeldt, A. and M. Grätzel, Molecular Photovoltaics. Accounts of Chemical Research, 2000. 33(5): p. 269-277.
17. Nazeeruddin, M.K., A. Kay, I.Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Grätzel, Conversion of Light to Electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes. Journal of the American Chemical Society, 1993. 115: p. 6382-6390.
18. Nazeeruddin, M.K., P. Péchy, and M. Grätzel, Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a Trithiocyanato–Ruthenium Complex. Chemical Communications, 1997. 18: p. 1705-1706.
19. Nazeeruddin, M.K., F.D. Angelis, S. Fantacci, A. Sellon, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of American Chemical Society, 2005. 127: p. 16835-16847.
20. Wang, P., C. Klein, R. Humphry-Baker, S.M. Zakeeruddin, and M. Grätzel, A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells. Journal of American Chemical Society, 2004. 127: p. 808-809.
21. Chen, C.-Y., et al., Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS nano, 2009. 3(10): p. 3103-3109.
22. Yu, Q., Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS nano, 2010. 4(10): p. 6032-6038.
23. Bessho, T., S.M. Zakeeruddin, C.Y. Yeh, E.W. Diau, and M. Gratzel, Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew Chem Int Ed Engl, 2010. 49(37): p. 6646-9.
24. Yella, A., et al., Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. science, 2011. 334(6056): p. 629-634.
25. Mathew, S., et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem, 2014. 6(3): p. 242-7.
26. Ito, S., et al., High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness. Advanced Materials, 2006. 18(9): p. 1202-1205.
27. Ito, S., H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy, and M. Gratzel, High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem Commun (Camb), 2008(41): p. 5194-6.
28. Zhang, G., H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, and P. Wang, High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary pi-conjugated spacer. Chem Commun (Camb), 2009(16): p. 2198-200.
29. Zeng, W., Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, and P. Wang, Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chemistry of Materials, 2010. 22(5): p. 1915-1925.
30. Kakiage, K., Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun (Camb), 2015. 51(88): p. 15894-7.
31. Wolfbauer, G., A.M. Bond, J.C. Eklund, and D.R. MacFarlane, A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Solar energy materials and solar cells, 2001. 70(1): p. 85-101.
32. Nakade, S., T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, Role of electrolytes on charge recombination in dye-sensitized tio2 solar cell (1): the case of solar cells using the I-/I3-redox couple. The Journal of Physical Chemistry B, 2005. 109(8): p. 3480-3487.
33. Harikisun, R. and H. Desilvestro, Long-term stability of dye solar cells. Solar Energy, 2011. 85(6): p. 1179-1188.
34. Balraju, P., P. Suresh, M. Kumar, M.S. Roy, and G.D. Sharma, Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye. Journal of Photochemistry and Photobiology A: Chemistry, 2009. 206(1): p. 53-63.
35. Stergiopoulos, T., I.M. Arabatzis, G. Katsaros, and P. Falaras, Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells. Nano letters, 2002. 2(11): p. 1259-1261.
36. Greijer Agrell, H., J. Lindgren, and A. Hagfeldt, Coordinative interactions in a dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1-3): p. 23-27.
37. Hamann, T.W., The end of iodide? Cobalt complex redox shuttles in DSSCs. Dalton Transactions, 2012. 41(11): p. 3111-3115.
38. Feldt, S.M., G. Wang, G. Boschloo, and A. Hagfeldt, Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couples. The Journal of Physical Chemistry C, 2011. 115(43): p. 21500-21507.
39. Saygili, Y., et al., Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. J Am Chem Soc, 2016. 138(45): p. 15087-15096.
40. Kannankutty, K., C.C. Chen, V.S. Nguyen, Y.C. Lin, H.H. Chou, C.Y. Yeh, and T.C. Wei, tert-Butylpyridine Coordination with Cu(dmp)2 (2+/+) Redox Couple and Its Connection to the Stability of the Dye-Sensitized Solar Cell. Acs Applied Materials & Interfaces, 2020. 12(5): p. 5812-5819.
41. Lee, Y.-L., C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, and C.-F. Chi, A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells. Electrochemistry Communications, 2010. 12(11): p. 1662-1665.
42. Li, L.-L., C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu, and E. Wei-Guang Diau, Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012. 22(13): p. 6267.
43. Olsen, E., G. Hagen, and S.E. Lindquist, Dissolution of platinum in methoxy propionitrile containing LiI/I 2. Solar Energy Materials and Solar Cells, 2000. 63(3): p. 267-273.
44. Murakami, T.N., et al., Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes. Journal of The Electrochemical Society, 2006. 153(12): p. A2255.
45. Huang, K.-C., et al., A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode. Journal of Materials Chemistry, 2010. 20(20): p. 4067.
46. Kavan, L., J.H. Yum, and M. Grätzel, Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. Acs Nano, 2010. 5(1): p. 165-172.
47. Pringle, J.M., V. Armel, and D.R. MacFarlane, Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells. Chem. Commun., 2010. 46(29): p. 5367-5369.
48. Ravirajan, P., A.M. Peiro, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, and J. Nelson, Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. Journal of Physical Chemistry B, 2006. 110(15): p. 7635-7639.
49. Jiang, K.-J., K. Manseki, Y.-H. Yu, N. Masaki, K. Suzuki, Y.-l. Song, and S. Yanagida, Photovoltaics Based on Hybridization of Effective Dye-Sensitized Titanium Oxide and Hole-Conductive Polymer P3HT. Advanced Functional Materials, 2009. 19(15): p. 2481-2485.
50. Lee, H.J., H.C. Leventis, S.A. Haque, T. Torres, M. Grätzel, and M.K. Nazeeruddin, Panchromatic response composed of hybrid visible-light absorbing polymers and near-IR absorbing dyes for nanocrystalline TiO2-based solid-state solar cells. Journal of Power Sources, 2011. 196(1): p. 596-599.
51. Zhang, W., R. Zhu, F. Li, Q. Wang, and B. Liu, High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter. The Journal of Physical Chemistry C, 2011. 115(14): p. 7038-7043.
52. de Freitas, J.N., M.A. Mamo, M. Maubane, W.A.L. van Otterlo, N.J. Coville, and A.F. Nogueira, Nanocomposites of gold and poly(3-hexylthiophene) containing fullerene moieties: Synthesis, characterization and application in solar cells. Journal of Power Sources, 2012. 215: p. 99-108.
53. Yang, L., et al., Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. Phys Chem Chem Phys, 2012. 14(2): p. 779-89.
54. Wen, C., K. Ishikawa, M. Kishima, and K. Yamada, Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films. Solar Energy Materials and Solar Cells, 2000. 61(4): p. 339-351.
55. Standridge, S.D., G.C. Schatz, and J.T. Hupp, Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009. 131(24): p. 8407-+.
56. Standridge, S.D., G.C. Schatz, and J.T. Hupp, Toward Plasmonic Solar Cells: Protection of Silver Nanoparticles via Atomic Layer Deposition of TiO2. Langmuir, 2009. 25(5): p. 2596-2600.
57. Ihara, M., M. Kanno, and S. Inoue, Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of silver nanoparticles modified with polymer. Physica E-Low-Dimensional Systems & Nanostructures, 2010. 42(10): p. 2867-2871.
58. Xu, Q., F. Liu, W.S. Meng, and Y.D. Huang, Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells. Optics Express, 2012. 20(23): p. A898-A907.
59. Choi, H., W.T. Chen, and P.V. Kamat, Know Thy Nano Neighbor. Plasmonic versus Electron Charging Effects of Metal Nanoparticles in Dye-Sensitized Solar Cells. Acs Nano, 2012. 6(5): p. 4418-4427.
60. Wang, Q., T. Butburee, X. Wu, H.J. Chen, G. Liu, and L.Z. Wang, Enhanced performance of dye-sensitized solar cells by doping Au nanoparticles into photoanodes: a size effect study. Journal of Materials Chemistry A, 2013. 1(43): p. 13524-13531.
61. Zarick, H.F., O. Hurd, J.A. Webb, C. Hungerford, W.R. Erwin, and R. Bardhan, Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures. Acs Photonics, 2014. 1(9): p. 806-811.
62. Arakawa, H., T. Yamaguchi, T. Sutou, Y. Koishi, N. Tobe, D. Matsumoto, and T. Nagai, Efficient dye-sensitized solar cell sub-modules. Current Applied Physics, 2010. 10(2): p. S157-S160.
63. Liu, Y., H. Wang, H. Shen, and W. Chen, The 3-dimensional dye-sensitized solar cell and module based on all titanium substrates. Applied Energy, 2010. 87(2): p. 436-441.
64. Lee, W.J., E. Ramasamy, and D.Y. Lee, Effect of electrode geometry on the photovoltaic performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009. 93(8): p. 1448-1451.
65. Zhang, Y.-D., X.-M. Huang, K.-Y. Gao, Y.-Y. Yang, Y.-H. Luo, D.-M. Li, and Q.-B. Meng, How to design dye-sensitized solar cell modules. Solar Energy Materials and Solar Cells, 2011. 95(9): p. 2564-2569.
66. Wei, T.-C., Y.-H. Chang, S.-P. Feng, and H.-H. Chen, A semi-experimental method for fast evaluation of the performance of grid-type dye-sensitized solar module. Int. J. Electrochem. Sci, 2013. 8: p. 9256-9263.
67. Huang, X., Y. Zhang, H. Sun, D. Li, Y. Luo, and Q. Meng, A new figure of merit for qualifying the fluorine-doped tin oxide glass used in dye-sensitized solar cells. Journal of Renewable and Sustainable Energy, 2009. 1(6): p. 063107.
68. Sastrawan, R., et al., New interdigital design for large area dye solar modules using a lead-free glass frit sealing. Progress in Photovoltaics: Research and Applications, 2006. 14(8): p. 697-709.
69. Komiya, R., A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, and H. Katayama. Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module in Technical Digest, 21st International Photovoltaic Science and Engineering Conference. 2011.
70. Adachi, M., M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. The Journal of Physical Chemistry B, 2006. 110(28): p. 13872-13880.
71. Zhai, L. and R.D. McCullough, Regioregular polythiophene/gold nanoparticle hybrid materials. Journal of Materials Chemistry, 2004. 14(2).
72. Brust, M., M. Walker, D. Bethell, D.J. Schiffrin, and R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications, 1994(7): p. 801-802.
73. Zhao, K., L.J. Xue, J.G. Liu, X. Gao, S.P. Wu, Y.C. Han, and Y.H. Geng, A New Method to Improve Poly(3-hexyl thiophene) (P3HT) Crystalline Behavior: Decreasing Chains Entanglement To Promote Order-Disorder Transformation in Solution. Langmuir, 2010. 26(1): p. 471-477.
74. Xue, L.J., X.H. Yu, and Y.C. Han, Different structures and crystallinities of poly(3-hexylthiophene) films prepared from aged solutions. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2011. 380(1-3): p. 334-340.
75. Nakao, Y. and K. Sone, Reversible dissolution/deposition of gold in iodine–iodide–acetonitrile systems. Chemical Communications, 1996(8): p. 897-898.
76. Krishnamurthy, S., A. Esterle, N.C. Sharma, and S.V. Sahi, Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Research Letters, 2014. 9.
77. Cushing, S.K., J.T. Li, F.K. Meng, T.R. Senty, S. Suri, M.J. Zhi, M. Li, A.D. Bristow, and N.Q. Wu, Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. Journal of the American Chemical Society, 2012. 134(36): p. 15033-15041.
78. Kusama, H. and K. Sayama, A comparative computational study on the interactions of N719 and N749 dyes with iodine in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2015. 17(6): p. 4379-4387.
79. Kleinhenz, N., et al., Ordering of Poly(3-hexylthiophene) in Solutions and Films: Effects of Fiber Length and Grain Boundaries on Anisotropy and Mobility. Chemistry of Materials, 2016. 28(11): p. 3905-3913.
80. Liu, I.P., L.W. Wang, Y.Y. Chen, Y.S. Cho, H.S. Teng, and Y.L. Lee, Performance Enhancement of Dye-Sensitized Solar Cells by Utilizing Carbon Nanotubes as an Electrolyte-Treating Agent. Acs Sustainable Chemistry & Engineering, 2020. 8(2): p. 1102-1111.
81. Xiao, J.Y., J.J. Shi, H.B. Liu, Y.Z. Xu, S.T. Lv, Y.H. Luo, D.M. Li, Q.B. Meng, and Y.L. Li, Efficient CH3NH3PbI3 Perovskite Solar Cells Based on Graphdiyne (GD)-Modified P3HT Hole-Transporting Material. Advanced Energy Materials, 2015. 5(8): p. 7.
82. Qu, S.Y., M.D. Wang, Y.L. Chen, Q. Yao, and L.D. Chen, Enhanced thermoelectric performance of CNT/P3HT composites with low CNT content. Rsc Advances, 2018. 8(59): p. 33855-33863.
83. Jung, H., et al., Enhanced Photovoltaic Properties and Long-Term Stability in Plasmonic Dye-Sensitized Solar Cells via Noncorrosive Redox Mediator. Acs Applied Materials & Interfaces, 2014. 6(21): p. 19191-19200.
84. Zhou, S., et al., Enabling Complete Ligand Exchange on the Surface of Gold Nanocrystals through the Deposition and Then Etching of Silver. Journal of the American Chemical Society, 2018. 140(38): p. 11898-11901.
85. Koussi-Daoud, S., D. Schaming, P. Martin, and J.C. Lacroix, Gold nanoparticles and poly(3,4-ethylenedioxythiophene) (PEDOT) hybrid films as counter-electrodes for enhanced efficiency in dye-sensitized solar cells. Electrochimica Acta, 2014. 125: p. 601-605.
86. Carretero-Palacios, S., M.E. Calvo, and H. Miguez, Absorption Enhancement in Organic-Inorganic Halide Perovskite Films with Embedded Plasmonic Gold Nanoparticles. Journal of Physical Chemistry C, 2015. 119(32): p. 18635-18640.
87. Yuan, Z., et al., Hot‐electron injection in a sandwiched TiOx–Au–TiOx structure for high‐performance planar perovskite solar cells. Advanced Energy Materials, 2015. 5(10): p. 1500038.
88. Mali, S.S., C.S. Shim, H. Kim, P.S. Patil, and C.K. Hong, In situ processed gold nanoparticle-embedded TiO 2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale, 2016. 8(5): p. 2664-2677.
89. Lu, Z., et al., Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles. RSC Advances, 2015. 5(15): p. 11175-11179.
校內:2026-08-11公開