| 研究生: |
杜建樺 Tu, Chien-Hua |
|---|---|
| 論文名稱: |
聚對苯二甲酸壬二酯之二種環帶球晶之三維內部晶板排列及結晶機制之探討 3-D Interior Lamellar Assembly in Dual Types of Ring-banded Spherulites of Poly(nonamethylene terephthalate) and Analyses of Crystal Packing Mechanisms |
| 指導教授: |
吳逸謨
Woo, Ea-Mor |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 聚對苯二甲酸壬二酯 、環帶球晶 、結晶機制 、三度空間結晶 |
| 外文關鍵詞: | poly(nonamethylene terephthalate), dual types of ring-banded morphology |
| 相關次數: | 點閱:122 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用偏光顯微鏡(POM)和掃描式電子顯微鏡(SEM),針對聚對苯二甲酸壬二酯(PNT)所具備之兩種環帶球晶,分別為單環帶球晶形貌(稱之Type-1)及雙環帶球晶形貌(稱之Type-2),進行光學性質的測定,及其相對應之內部晶板排列進行觀察與分析。POM觀察,隨著Tmax升高,Type-1球晶的數量分布比例及體積分布比例的效應隨之增加,然而Type-2球晶則呈現相反趨勢。進一步針對球晶成長速率進行測定,嘗試從動力學的角度解釋為何在同一個熱條件下,會有兩種環帶球晶的同時生成,但結果並不存在著差異。然而不同球晶初始成長型貌(Type-1:稻稈狀球核;Type-2:圓形球核)及後續的結晶過程(Type-1:先沿著球核兩端結晶,接著再匯集於垂直球核的方向,並等向巢位為生長;Type-2:自始至終的等向輻射性朝外圍結晶),解釋了PNT在同一個結晶溫度(Tc)同時形成Type-1和Type-2球晶的機制。進一步應用SEM進行內部晶板結構之觀察,以期更深入的解析Type-1和Type-2的結晶機制。我們著實發現到Type-1和Type-2的內部晶板排情形,除了彼此具備一個共同的特徵:2種晶板排列之不連續性,其他排列特徵則存有甚大的差異。對於Type-1球晶,除了發現從不同角度切開樣品,會觀察到不同的晶板排列情形(沿著band:valley至ridge區域,有蜷曲(curling)的晶板生長趨勢;沿著ridge:晶板具備週期性偏折之特徵,且伴隨著如同扇狀的晶板分支)之外,當內部球核的位置較靠近上表面(殼層結構),或是處於較深層內部(沿著球核為扇狀結構伴隨週期性偏折,而垂直於球核則是殼層結構)時,也都會進而影響內部晶板排列的形貌以及規則性。至於Type-2球晶,則觀察到許多傾斜排列的晶板,與上表面的ridge之排列形貌產生強烈的對應,而valley區域所對應的內部晶板排列,則是呈現出與ridge區域相當大的差異。當我們進一步增厚Type-2球晶厚度,結果發現到當給予足夠之生長空間時,高分子晶板也會呈現出扭轉(twisting)的結構。因此,在藉由POM和SEM的鑑定分析後,本研究詳實的呈現出Type-1和Type-2不同的球晶成長形貌與機制。
Dual types of ring-banded morphology of PNT, which are single ring-banded morphology (Type-1) and double ring-banded morphology (Type-2), are investigated by polarized optical microscopy (POM) and scanning electron microscopy (SEM) to understand the exact crystallization mechanisms. We exploit POM to not only determine the Tmax effects on the number proportion and volume fraction of Type-1 and Type-2 spherulites over the entire sample, but also record the growth rates of both and the beginning nuclei morphology plus the subsequent spherulitic morphology captured at different time of crystallization. However, the kinetic aspects cannot explain why PNT could form the dual types of ring-banded morphology under the same thermal condition; instead, while capturing the entire crystallization process, we clearly clarify the reason. Then we take advantage of SEM to observe the interior lamellar arrangement of Type-1 and Type-2 spherulites, and to see whether any differences inside the bulk. Under such analyses, we first understand the only same characteristic existing in Type-1 and Type-2 spherulites: 2 kinds of discontinuities in lamellar arrangement. And the following examination show that the lamellae of Type-1 spherulites demonstrate the different arrangement while being observed from different dissection angle, in addition, the nuclei positions either near the top surface or more inside the spherulite also influences the arrangement and complexity of interior lamellae. As for Type-2 spherulites of PNT, we observe the strong correlation between the topography and interior lamellar assembly, that is to say, both the lamellar arrangement in top surface and inside the bulk display the tilted characteristics. More interestingly, the lamellar arrangements of Type-2 spherulites clearly demonstrate the twisting structure with enough growing space. Consequently, under the combination of POM and SEM analyses, we exactly illustrate the different crystallization mechanisms of Type-1 and Type-2 spherulites of PNT.
[1]E. Woo, G. Lugito, C. Yang, S. Chang, and L. Lee, "Banded Crystalline Spherulites in Polymers and Organic Compounds: Interior Lamellar Structures Correlating with Top-Surface Topology," J Adv Chem Eng, vol. 5, p. 2, 2015.
[2]L.-T. Lee, E. M. Woo, and Y.-T. Hsieh, "Macro-and micro-lamellar assembly and mechanisms for unusual large-pitch banding in poly(l-lactic acid)," Polymer, vol. 53, pp. 5313-5319, 2012.
[3]G. Lugito and E. M. Woo, "Three types of banded structures in highly birefringent poly(trimethylene terephthalate) spherulites," Journal of Polymer Science Part B: Polymer Physics, vol. 54, pp. 1207-1216, 2016.
[4]A. Keller, "Investigations on banded spherulites," Journal of Polymer Science, vol. 39, pp. 151-173, 1959.
[5]H. Keith and F. Padden, "The optical behavior of spherulites in crystalline polymers. Part I. Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation," Journal of Polymer Science, vol. 39, pp. 101-122, 1959.
[6]H. Keith and F. Padden, "The optical behavior of spherulites in crystalline polymers. Part II. The growth and structure of the spherulites," Journal of Polymer Science, vol. 39, pp. 123-138, 1959.
[7]D. Bassett and A. Hodge, "On lamellar organization in banded spherulites of polyethylene," Polymer, vol. 19, pp. 469-472, 1978.
[8]A. Lustiger, B. Lotz, and T. Duff, "The morphology of the spherulitic surface in polyethylene," Journal of Polymer Science Part B: Polymer Physics, vol. 27, pp. 561-579, 1989.
[9]A. Toda, T. Arita, and M. Hikosaka, "Three-dimensional morphology of PVDF single crystals forming banded spherulites," Polymer, vol. 42, pp. 2223-2233, 2001.
[10]B. Lotz and S. Z. Cheng, "A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals," Polymer, vol. 46, pp. 577-610, 2005.
[11]H. Keith and F. Padden, "Twisting orientation and the role of transient states in polymer crystallization," Polymer, vol. 25, pp. 28-42, 1984.
[12]M. Rosenthal, G. Portale, M. Burghammer, G. Bar, E. T. Samulski, and D. A. Ivanov, "Exploring the origin of crystalline lamella twist in semi-rigid chain polymers: the model of Keith and Padden revisited," Macromolecules, vol. 45, pp. 7454-7460, 2012.
[13]J.M. Schultz, "Unusual “Twisting” Morphology in Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Spherulites," Macromolecules, vol. 46, pp. 4227-4229, 2013.
[14]E. M. Woo and G. Lugito, "Origins of periodic bands in polymer spherulites," European Polymer Journal, vol. 71, pp. 27-60, 2015.
[15]Z. Wang, G. C. Alfonso, Z. Hu, J. Zhang, and T. He, "Rhythmic growth-induced ring-banded spherulites with radial periodic variation of thicknesses grown from poly(ε-caprolactone) solution with constant concentration," Macromolecules, vol. 41, pp. 7584-7595, 2008.
[16]Z. Wang, L. An, W. Jiang, B. Jiang, and X. Wang, "Ring‐banded spherulite surface structure of poly(ε‐caprolactone) in its miscible mixtures with poly(styrene‐co‐acrylonitrile)," Journal of Polymer Science Part B: Polymer Physics, vol. 37, pp. 2682-2691, 1999.
[17]Y. Duan, Y. Zhang, S. Yan, and J. M. Schultz, "In situ AFM study of the growth of banded hedritic structures in thin films of isotactic polystyrene," Polymer, vol. 46, pp. 9015-9021, 2005.
[18]Y. Li, H. Huang, T. He, and Z. Wang, "Rhythmic Growth Combined with Lamellar Twisting Induces Poly(ethylene adipate) Nested Ring-Banded Structures," ACS Macro Letters, vol. 1, pp. 154-158, 2011.
[19]Z. Wang, Z. Hu, Y. Chen, Y. Gong, H. Huang, and T. He, "Rhythmic growth-induced concentric ring-banded structures in poly(ε-caprolactone) solution-casting films obtained at the slow solvent evaporation rate," Macromolecules, vol. 40, pp. 4381-4385, 2007.
[20]Y. Li, Z. Wang, and T. He, "Morphological Control of Polymer Spherulites via Manipulating Radial Lamellar Organization upon Evaporative Crystallization: A Mini Review," Crystals, vol. 7, p. 115, 2017.
[21]E. Woo, L.-Y. Wang, and S. Nurkhamidah, "Crystal lamellae of mutually perpendicular orientations by dissecting onto interiors of poly(ethylene adipate) spherulites crystallized in bulk form," Macromolecules, vol. 45, pp. 1375-1383, 2012.
[22]G. Lugito and E. M. Woo, "Interior Lamellar Assembly in Correlation to Top-Surface Banding in Crystallized Poly(ethylene adipate)," Crystal Growth & Design, vol. 14, pp. 4929-4936, 2014.
[23]G. Lugito and E. M. Woo, "Novel approaches to study the crystal assembly in banded spherulites of poly(trimethylene terephthalate)," CrystEngComm, vol. 18, pp. 6158-6165, 2016.
[24]E. Woo and Y.-F. Chen, "Single-and double-ring spherulites in poly(nonamethylene terephthalate)," Polymer, vol. 50, pp. 4706-4717, 2009.
[25]Y. F. Chen and E. M. Woo, "Annular Multi‐Shelled Spherulites in Interiors of Bulk‐Form Poly(nonamethylene terephthalate)," Macromolecular Rapid Communications, vol. 30, pp. 1911-1916, 2009.
[26]E. M. Woo, S. Nurkhamidah, and Y.-F. Chen, "Surface and interior views on origins of two types of banded spherulites in poly(nonamethylene terephthalate)," Physical Chemistry Chemical Physics, vol. 13, pp. 17841-17851, 2011.
[27]E. Woo and S. Nurkhamidah, "Surface nanopatterns of two types of banded spherulites in poly(nonamethylene terephthalate) thin films," The Journal of Physical Chemistry B, vol. 116, pp. 5071-5079, 2012.