簡易檢索 / 詳目顯示

研究生: 蔡宛樺
Tsai, Wan-Hua
論文名稱: 由環口攝影影像進行以模型為基礎之牙齒矯正參數評估
Model-based Orthodontic Assessments from Dental Panoramic Radiographs
指導教授: 孫永年
Sun, Yung-Nien
共同指導教授: 劉佳觀
Liu, Jia-Kuang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 58
中文關鍵詞: 牙齒矯正環口攝影影像能量方程式與權重訓練以模型為基礎之分割
外文關鍵詞: orthodontics, dental panoramic radiographs, energy function and weights training, active shape model, model-based segmentation
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來進行牙齒矯正治療的人越來越多,矯正治療的時間往往依每人的牙齒情況而有所不同。因此牙醫師們設計了一組參數,用於評估治療時間,以及不正常牙齒治療的可行性。本論文提出一套方法來建立穩固的量測系統,以協助牙醫師獲得可靠的牙齒參數。環口攝影藉由環繞口腔一周所拍攝的影像,將立體的口腔區域以二維影像作呈現,可以用來觀察整個口腔區域的牙齒及骨頭情形,所以矯正牙科經常採用此影像進行參數量測與評估。
    由於環口影像為全方面的取像,對於細節的描述並不清楚,所以對於每顆牙齒做細部影像分割會有一定難度。針對影像資訊的不完整,本論文提出使用以模型為基礎的方法進行影像分割。本論文所提出的影像處理系統依序可分成四大部分:影像前處理,模型訓練,牙齒輪廓分割以及參數量測。影像前處理針對影像大小及亮度分布做一致化設定,再對感興趣區域做影像強化;模型訓練部分則利用ASM (Active Shape Model) 訓練牙齒模型,並針對形變依據的能量方程式及其權重值提出一套完整的訓練方法;然後依據訓練階段所得到的模型,進行牙齒輪廓的形變,以分割牙齒區域進而將輪廓貼合在影像的牙齒上;再獲得牙齒輪廓後,可再利用牙齒輪廓進行自動化的參數量測。
    實驗結果分成定性與定量分析,我們將比較自動化分割的牙齒輪廓與專家所點選的標準值差異性,以及專家所量測的參數結果值與自動化的參數量測值的差異。由實驗結果得知,自動化牙齒輪廓分割結果與專家所點選的標準值相似度極高,且自動化量測的參數值與專家所量測的參數值差異很小。因此,本論文所提出的方法能夠提供自動且方便的工具,以幫助牙醫師更準確且一致地進行牙齒矯正之評估與治療。

    In recent years, there are more people taking the orthodontic treatment. The treatment process and consuming time are usually different for patients with dissimilar symptoms. For better treatment outcomes, dentists design a set of parameters for orthodontic evaluation. In this thesis, an automated system is proposed to assist dentists in obtaining reliable measurement of these parameters. Dental panoramic radiograph has been widely used in the clinical diagnosis of stomatology. It is used to observe both the teeth and bones in oral cavity. Because the panoramic radiograph provides a wide range of oral view, the detailed information of a single tooth is not always available so that the segmentation of a tooth contour is not so simple.
    The proposed system can be divided into four stages: image preprocessing, model training, tooth contour segmentation and assessment of parameters. In the image preprocessing, the image size is first made the same based on the region of oral cavity, the histograms are then normalized, and the regions of interest (ROIs) are locally enhanced at last. There are three terms in the model training stage: the mean shape and mean image model training, the energy function training and the mean weights training. The method to automatically segment the tooth contours by using the statistical model is explained in the stage of tooth segmentation. Finally, the automatic assessment of orthodontic parameters is explained at the last stage.
    The experimental results comprise the qualitative and quantitative analyses. The experimental results of the proposed method have been compared to the ground truth from experts for both the tooth contours and the orthodontic parameters. It has been shown that the proposed method can obtain similar accuracy and consistent measurement in helping dentists for treatment evaluation.

    摘要 iii ABSTRACT v ACKNOWLEDGEMENT vii CONTENTS viii LIST OF TABLES xi LIST OF FIGURES xii CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Related Works 2 1.3 Thesis Organization and System Flowchart 3 CHAPTER 2 MATERIALS 5 CHAPTER 3 IMAGE PREPROCESSING 9 3.1 Image Normalization 10 3.2 ROI Enhancement 11 CHAPTER 4 CONSTRUCTION OF TOOTH SHAPE MODEL AND ENERGY FUNCTION 20 4.1 Construction of Tooth Shape Model 20 4.1.1 Construction of Initial Manually-segmented Tooth Model 21 4.1.2 Statistical Model and Image Construction 22 4.2 Construction of Energy Function 24 4.2.1 Energy Terms Selection 25 4.2.2 Energy Function Training 27 4.2.3 Deformed Mean Weights Training 29 CHAPTER 5 MODEL-BASED SEGMENTATION FROM PANORAMIC DENTAL RADIOGRAPHS 32 5.1 Model Registration 32 5.1.1 Gap Detection 32 5.1.2 Coarse Registration 33 5.2 Contour Segmentation 33 5.2.1 Fine Registration 33 5.2.2 Shape Deformation 34 5.3 Contour Refinement 35 CHAPTER 6 ORTHODOTIC ASSESSMENTS 38 6.1 Crown Vertical Position (Relative) (CVPrel) 38 6.2 Crown Vertical Position (Absolute) (CVPabs) 39 6.3 Axis Angulation (Ang) 40 6.4 Crown Overlap Position (COP) 42 6.5 Crown Overlap Area (COA) 42 CHAPTER 7 EXPERIMENTAL RESULTS AND DISCUSSION 44 7.1 Accuracy in Automatic Segmentation of Tooth Contours 44 7.1.1 Qualitative Analysis 45 7.1.1.1 Automatic Segmentation for Complete-root Tooth without Refinement 45 7.1.1.2 Automatic Segmentation for Complete-root Tooth with Refinement 45 7.1.1.3 Incomplete-root Tooth Segmentation 46 7.1.2 Quantitative Analysis 47 7.1.2.1 Automatic Segmentation for Complete-root Tooth without Refinement 47 7.1.2.2 Automatic Segmentation for Complete-root Tooth with Refinement 47 7.2 Accuracy in Orthodontic Assessments 48 7.2.1 Automatic Segmentation with Automatic Measurement vs. Manually Segmentation with Manually Measurement 48 CHAPTER 8 CONCLUSION AND FUTURE WORKS 50 8.1 Conclusions 50 8.2 Future works 50 APPENDIXES 52 REFERENCES 56

    [1] E. H. Said, D. E. M. Nassar, G. Fahmy, H. H. Ammar, “Teeth Segmentation in Digitized Dental X-Ray Films Using Mathematical Morphology”, IEEE Transactions On Information Forensics And Security 1 (2006)
    [2] O. Nomira, M. Abdel-Mottalebb, “Hierarchical contour matching for dental X-ray radiographs”, Pattern Recognition 41, 130-138 (2008)
    [3] P. L. Lin, Y. H. Lai, P. W. Huang, “Dental biometrics: Human identification based on teeth and dental works in bitewing radiographs”, Pattern Recognition 45, 934-946 (2012)
    [4] M. L. Tangel, C. Fatichah, F. Yan, J. P. Betancourt, M. R. Widyanto, F. Dong, K. Hirota, “Dental Classification for Periapical Radiograph based on Multiple Fuzzy Attribute”, IFSA World Congress and NAFIPS Annual Meeting (2013) Joint
    [5] P. L. Lin, P. Y. Huang, P. W. Huang, H. C. Hsu, C. C. Chen, “Teeth segmentation of dental periapical radiographs based on local singularity analysis”, Computer Methods and Programs in Biomedicine 113, 433-445 (2014)
    [6] R. Wanat, D. Frejlichowski, “A Problem of Automatic Segmentation of Digital Dental Panoramic X-Ray Images for Forensic Human Identification”, Central European Seminar on Computer Graphics (2011)
    [7] P. L. Lin, P. W. Huang*, Y. S. Cho, C. H. Kuo, “An automatic and effective tooth isolation method for dental radiographs”, Opto-Electronics Review 21, 126-136 (2013)
    [8] I. Nurtanio, I K. E. Purnama, M. Hariadi, M. H. Purnomo, “Cyst and Tumor Lesion Segmentation on Dental Panoramic Images using Active Contour Models”, IPTEK, The Journal for Technology and Science 22 (2011)
    [9] M. G. Roberts, J. Graham, H. Devlin, “Image Texture in Dental Panoramic Radiographs as a Potential Biomarker of Osteoporosis”, IEEE Transactions on Biomedical Engineering 60 (2013)
    [10] J. Oliveira, H. Proença, “Caries Detection in Panoramic Dental X-ray Images”, Computational Vision and Medical Image Processing: Recent Trends, Computational Methods in Applied Sciences 19 (2011)
    [11] E. B. Barboza, A. N. Marana, D. T. Oliveira, Semiautomatic dental recognition using a graph-based segmentation algorithm and teeth shapes features, International Conference on Biometrics (2012)
    [12] A. Gooßen, E. Hermann, G. M. Weber, T. Gernoth, T. Pralow, R. R. Grigat, “Model-based segmentation of pediatric and adult joints for orthopedic measurements in digital radiographs of the lower limbs”, Comput Sci Res Dev 26, 107-116 (2011)
    [13] P. Mysling, K. Petersen, M. Nielsen, M. Lillholm, “A unifying framework for automatic and semi-automatic segmentation of vertebrae from radiographs using sample-driven active shape models”, Machine Vision and Applications (2012)
    [14] M. J. D. Powell, “An efficient method for finding the minimum of a function of several variables without calculating derivatives”, The Computer Journal 7, 155-162 (1964)
    [15] D. H. Chen, Y. N. Sun*, “A self-learning segmentation framework - the Taguchi approach”, Computerized Medical Imaging and Graphics 24, 283-296 (2000)
    [16] T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham, “Active Shape Models-Their Training and Application”, Computer Vision and Image Understanding 61, 38-59 (1995)
    [17] M. Kass, A. Witkin, D. Terzopoulos, “Snakes: Active contour models”, International Journal of Computer Vision 1, 321-331 (1988)
    [18] J. A. Stewart, G. Heo, K. E. Glover, P. C. Williamson, E. W. N. Lam, P. W. Major, “Factors that relate to treatment duration for patients with palatally impacted maxillary canines”, American Journal of Orthodontics and Dentofacial Orthopedics 119, 216–225 (2001)
    [19] E. M. G. Brusveen, P. Brudvik, O. E. Bøe, M. Mavragani, “Apical Root Resorption of Incisors after Orthodontic Treatment of Impacted Maxillary Canines: A Radiographic Study”, American Journal of Orthodontics and Dentofacial Orthopedics (2012)
    [20] P. K. Kannan, S. K. Palanisamy, T. S. Kumar, “A case of impacted maxillary central incisor and its management”, Journal of Pharmacy and Bioallied Sciences, 174-176 (2012)
    [21] Gonzalez, Woods, “Digital Image Processing”, Prentice Hall, 2008

    無法下載圖示 校內:2019-09-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE