簡易檢索 / 詳目顯示

研究生: 張景堯
Chang, Jing-Yao
論文名稱: 形狀記憶合金驅動高分子微夾持系統之發展
Development of Shape Memory Alloy Actuated Polymer Micro-Gripper Systems
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 114
中文關鍵詞: 狀記憶合金微撓性夾持器生醫環境夾持資訊工程夾持
外文關鍵詞: Shape memory alloy (SMA), Micro-compliant gripper
相關次數: 點閱:85下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文致力於設計製造出線型形狀記憶合金致動之微型夾爪,結合N.P.Suh的兩大設計公設[21]:功能獨立設計及最小資訊量設計,將原尺寸0.87mmx0.68mmx0.2mm縮小2/3約為0.55mm×0.44mm×0.2mm,簡化夾爪製造流程,使夾爪製造適用於單片光罩式加工,並對新型微夾爪進行建模分析及ANSYS模擬。
    首先將致動器由壓電致動器改為線型形狀記憶合金,應用形狀記憶效應致動夾爪開闔,設計出包含SMA致動器與懸臂之微夾爪致動器,並將SMA致動器進行建模分析,了解SMA致動應用的動態行為。
    其次對於微夾爪與SMA致動器組裝上,規劃製作及組裝流程,利用測定顯微鏡完成製作及組裝程序。控制器方面以555電路模擬PWM控制SMA致動微夾爪開闔,以完成致動夾爪開闔檢測及夾持測試。
    最後透過影像系統完成夾持器夾持測試,夾持測試包含資訊工程及生醫環境夾持,資訊工程夾持是將長5mm、直徑38μm物件,由內徑49μm組裝孔夾出即完成;生醫環境夾持則是將長1cm、直徑38μm的物件放入液體(水)中,利用夾持器深入液面下夾取物件。

    In this thesis, A SMA actuated micro-gripper is designed and fabricated. Using Suh’s design method with which independent axiom and information axiom, the gripper is reduced from original size of 0.87mmx0.68mmx0.2mm to 0.55mmx0.44mmx0.2mm. A single mask mode is used to simplify gripper’s fabrication processes for suitable fabrication. A model of the new micro-gripper is constructed, and analyzed and simulated by ANSYS.
    At first, the piezo actuator is changed to the SMA actuator and the shape memory effect is applied to actuat the mico-gripper. The design of micro-gripper actuator consists of a SMA actuator and cantilever arm. A model of the the SMA actuator is constructed to study the dynamic motion behavior.
    Secondly, Fabrication processes are planned to fabricate micro-gripper and SMA actuator, and fabrication is finished by using measuring microscope. Using 555, a PWM controled to actuate SMA micro-gripper is simulated.
    Finally, gripping tests are competed by using an image acquisition system. The gripping tests include the gripping applications in information engineering and biomedical environment. In information engineering, the test is to grip an object of 5mm in length and 38μm in diameter out of a hole with 49μm in diameter. In biomedical environment test, a gripping object of 1cm in length and 38μm in diameter is manipulated under water.

    中文摘要 I ABSTRACT II 目 錄 III 圖 目 錄 VI 表 目 錄 X 符 號 表 XI 致 謝 XV 第一章 緒論 1 1-1 引言 1 1-2 文獻回顧 1 1-2.1 微夾持器 2 1-2.2 製程分析 3 1-2.3驅動方式 3 1-3 研究目標 8 1-4 研究方法 8 第二章 微夾爪設計、建模與分析 13 2-1 設計目標 13 2-2 設計方法 14 2-3 微夾持器建模 16 2-3.1 微夾持器靜態模型 16 2-3.2 握持力分析 20 2-3.3 夾持器動態建模 23 2-3.3a 閉合過程 23 2-3.3b夾持接觸過程 26 2-4 微夾持器模擬分析 30 2-4.1 等效彈性係數驗證 31 2-4.2 位移增益 34 2-4.3 位移力量增益 36 2-4.4 尺寸效應 37 第三章 SMA致動器設計、分析與模擬 41 3-1 形狀記憶合金概論 41 3-1.1 形狀記憶合金發展背景 41 3-1.2形狀記憶合金效應 42 3-1.2a 形狀記憶效應 42 3-1.2b 擬彈性效應 43 3-1.3形狀記憶合金溫度特性 44 3-2 形狀記憶合金致動器設計 46 3-2.1 設計目標 46 3-2.2 設計方法 48 3-3 形狀記憶合金致動器建模分析 50 3-3.1 形狀記憶合金應變-應力曲線期望行為 50 3-3.2 形狀記憶合金致動器建模 52 第四章 系統實現與測試 59 4-1 夾爪製程 59 4-1.1 測定顯微鏡簡介 59 4-1.2 準分子雷射加工機簡介 61 4-1.3 光罩設計製作 62 4-1.4 光罩基座設計製造 64 4-1.5 夾爪製造 65 4-2 致動器製造 69 4-2.1 致動器致動位移數學模型 73 4-3 夾持器組裝 75 4-4 夾持系統開闔測試 82 第五章 微夾持系統夾持測試 84 5-1 夾持系統結構 84 5-2 控制器設計 85 5-3 夾持系統動態建模 87 5-4 物件夾持測試 87 5-5 負重測試 94 5-6 生醫環境夾持測試 95 5-6.1 夾爪置於液體致動測試 95 5-6.2 夾爪置於液體夾持測試 95 第六章 結論與未來展望 101 6-1 結論 101 6-2 未來展望 102 參考文獻 103 附 錄 108 自述 114

    [1] C. J. Kim, A. P. Pisano, R. S. Muller, and M. G. Lim, “Design, Fabrication, and Testing of A Polysilicon Micorgripper,” Micorstructures, Sensors, and Actuators, ADME Dynamic System and Control Division, Vol. 19, pp. 99~109, 1990.
    [2] Y. Suzuki, “Fabrication and Evaluation of Flexible Microgripper,” Journal of Applied Physics, No. 4A, pp. 2107~2112, 1994.
    [3] L. Sun, J. Chen, and P. Sun, “The Design of Mili-grippers Using Piezoelectric actuator as Electro-Magnetic Force,” Sixth International Symposium on Micro Machine and Human Science, pp.199~203, 1995, IEEE.
    [4] F. Arai, Y. Nonoda, T. Fukuda, and T. Oota, “New Force Measurement and Micro Grasping Method Using Laser Raman Spectro-photometer,” International Conference on Robotics and Automation, pp. 2220~2225, 1996, IEEE.
    [5] Dong-Soo Kwon, Ki Young Woo, Se Kyong Song, Wan Soo Kim, and Hyung Suck Cho, “Microsurgical Telerobot System,” Proc. of IEEE Int. Conf. on Intelligent Robots and Systems, pp.945-950, 1998.
    [6] A. P. Dorey, and Moore, J. H. (ed), “Advances in Actuators,” Institute of Physics Publishing, London, 1995.
    [7] 吳東權,“微機電系統之技術現況與發展”,工業技術研究所機械工業研究所,中華民國八十三年五月.
    [8] K. Ikuta, “MICRO/MINIATURE SHAPE MEMORY ALLOY ACTUATOR,” Proceedings of the 1990 IEEE International Conference on Robotics and Automation, Vol.3, pp. 2156-2161.
    [9] R. A. Russell, “Development of a robotic manipulator for micro-assembly operations,” Proceeding of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol.1, pp. 471 -474.
    [10] A. P. Lee, D. R. Ciarlo, P. A. Krulevitch, S. Lehew, J. Trevino, and M. A. Northrup, “A Practical Microgripper by Fine Alignment, Eutectic Bonding and SMA Actuation,” Proceedings of International Solid-State Sensors and Actuators Conference (Transducers '95), Stockholm, Sweden, June, 1995, pp. 368-371.
    [11] S. Takeuchi, and I. Shimoyamar, “A Three-Dimensional Shape Memory Alloy Microelectrode with Clipping Structure for Insect Neural Recording,” Journal of Microelectromechanical Systems, Vol. 9, pp. 24-31, MARCH 2000.
    [12] D. Salle, “Design of a Robotic Arm, Actuated by Shape Memory Alloys,” Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering, Vol.3, pp. 1437 -1442.
    [13] S. Bütefischa, G. Pokarb, S. Büttgenbach, and J. Hesselbachb, “A new SMA actuated miniature silicon gripper for micro assembly,” Transducers & Systems (Sensor ’99), Vol. 2, pp. 321-326.
    [14] M. Kohl, B. Krevet, and E. Just “SMA Microgripper System,” Sensors and Actuators, pp 208-213, 2000.
    [15] M. Kohl, B. Krevet, and E. Just “SMA Microgripper System,” Sensors and Actuators, pp 646-652, 2002.
    [16] H. Zhang, E. Burdet, D. W. Hutmacher, A. N. Poo,
    Y. Bellouard, R. Clavel, and T. Sidler, “Robotic Micro-assembly of Scaffold/Cell Constructs with a Shape Memory Alloy Gripper,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, pp. 1483-1488.
    [17] M. B. Khamesee, N. Kato, Y. Nomura, and T. Nakamura, “Design and Control of a Microrobotic System Using Magnetic Levitation,” IEEE/ASME TRANSACTIONS ON MECHATRONICS, Vol. 7, pp 1-14, 2002.
    [18] V. Seidemann, S. Bütefischa, and S, Büttgenbach, “Fabrication and investigation of in-plane compliant SU-8 structures for MEMS and their application to micro valves and micro grippers,” Sensors and Actuators, pp. 457-461, 2002.
    [19] A. Menciassi, A. Eisinberg, M. Mazzoni, and P. Dario, “A Sensorized μElectro Discharge Machined Superelastic Alloy Microgripper for Micromanipulation: simulation and characterization,” Proceeding of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1591-1595.
    [20] I. Roch, Ph. Bidaud, D. Collard, and L. Buchaillot, “Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film,” JOURNAL OF MICROMECHANICS AND MICROENGINEERING, pp. 330-336, 2003.
    [21] N.P. Suh, “The Principles of Design,” Oxford University Press, New York, pp. 811-833, 1990.
    [22] 程永華,“壓電致動微型撓性夾持器之設計、製造與控制”,國立成功大學機械工程學系碩士論文,中華民國八十八年六月.
    [23] F. Arai, Y. Nonoda, T. Fukuda, and T. Oota, “New Force Measurement and Micro Grasping Method Using Laser Raman Spectro-photometer,” International Conference on Robotics and Automation, pp. 2220-2225, 1996 IEEE.
    [24] 馮晉,“微作業端效器之設計製造與測試”,國立成功大學機械工程學系碩士論文,中華民國九十年六月.
    [25] 黃義芳,“微型撓性夾爪系統之分析與設計”,國立成功大學機械工程學系碩士論文,中華民國八十六年六月.
    [26] J. L. Meriam, and L. G. Kraige, “EGINEERING MECHANICS,” Wiley, 1993.
    [27] 陳泰成,“微組裝系統影像伺服建模與測試”,國立成功大學機械工程學系碩士論文,中華民國九十一年六月.
    [28] 王永聯,“平面微型撓性機械之分析與製造”,國立成功大學機械工程學系碩士論文,中華民國八十八年四月.
    [29] 顧鴻壽等,“形狀記憶合金講習會”,工業技術研究院工業材料研究所,中華民國七十七年十月.
    [30] 舟久保 熙康,“形狀記憶合金”,復漢出版社,1999.
    [31] 廖南吉,“形狀記憶合金與用途”,南臺出版社,1988.
    [32] 任勇生,王世文,李俊寶,沈應鵬,“形狀記憶合金在結構主被動震動控制中的應用”,力學進展,Vol 29,pp. 19-33,1999.
    [33] J. L. Pons, D. Reynaerts, J. Peirs, R. Ceres, and H. VanBrussel, “Comparison of Different Control Approaches to Drive SMA Actuators,” ICAR’97, pp. 819-824.
    [34] K. P. Seward, “A New Mechanical Characterization Method for Thin Film Microactuators and It’s Application to NiTiCu Shape Memory Alloy,” M.S. Thesis, MIT, 1999
    [35] T. W. Duerig, K. N. Melton, D. Stockel, and C. M. Wayman, “ENGINEERING ASPECTS OF SHAPE MEMORY ALLOYS,” Butterworth-Heinemann, 1990.
    [36] K. Ikuta, M. Tsujamoto, and S. Hirose, ”Mathematical Model and Experimental Verification of Shape Memory Alloy for Designing Actuator,” in MEMS ’91, pp 103-108,1991.
    [37] D. R. Madill, and D. Wang, “Modeling and L2-Stability of Shape Memory Alloy Position Control System,” IEEE Transactions on Control Systems Technology, Vol. 6, pp. 473-481, 1998.
    [38] G. Lin, D. Yang, and R. O. Warrington, “A computational model of the shape memory alloys for the design and control of micro actuator,” Micromech. Syst., vol. 40, pp. 171-181, 1992.
    [39] A. Priadko, S. Pulnev, I, Viahhi, V, Vetrov and V, Yudin, “Actuators and Drives Based on CU-AL-NI Shape Memory Single Crystals,” Proceedings of the 6th International Conference ACTUATOR 98, Bremen, Germany, pp. 478-481, 1998.

    下載圖示 校內:立即公開
    校外:2003-07-29公開
    QR CODE