簡易檢索 / 詳目顯示

研究生: 許宏銘
Syu, Hong-Ming
論文名稱: 互補攪亂碼多重擷取技術及其在MIMO系統中的應用
Complementary-Coded Scrambling Multiple Access (CCSMA) and Its Application in MIMO Systems
指導教授: 陳曉華
Chen, Hsiao-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 203
中文關鍵詞: 多輸入多輸出技術互補碼分碼多工攪亂編碼技術
外文關鍵詞: MIMO Technique, Complementary CDMA, Scrambling Technique
相關次數: 點閱:100下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出了一種新的互補碼分碼多工技術稱為互補攪亂碼分碼多工技術(Complementary-Coded Scrambling Multiple Access)。互補攪亂碼分碼多工技術成功結合了互補碼分碼多工技術,多天線輸入輸出系統(MIMO)與攪亂編碼技術。使用互補碼分碼多工技術,互補攪亂碼分碼多工系統便能夠克服多路徑與多重用戶干擾。使用攪亂編碼技術與使用直序列展頻技術的傳統互補碼系統比較,
    互補攪亂碼分碼多工系統可以獲得更好的頻寬利用效率。使用多天線輸入輸出系統,互補攪亂碼分碼多工系統能降低實現互補碼分碼多工技術所需要的頻寬需求。

    在之前所做的研究基礎上,互補攪亂碼分碼多工技術克服了許多缺點。第一,傳統直序列展頻多輸入多輸出互補碼分碼多工系統使用碼來分天線。由於不同天線的傳送資料能夠使用編碼來分離所以能夠實現多工傳輸或空間分集,但同時也增加了對頻寬資源的需求。這個概念並不是使用多輸入多輸出技術的主要理念,使用多輸入多輸出技術的主要理念是為了減少系統對於頻寬資源的需求。互補攪亂碼分碼多工系統利用通道本身的特性來分天線,直接使用了空間的資源所以我們可以說互補攪亂碼分碼多工技術是真正的多輸入多輸出互補碼分碼多工技術。
    第二,傳統直序列展頻多輸入多輸出互補碼分碼多工系統使用直序列展頻編碼來消除干擾。直序列展頻技術會消耗大量頻寬尤其是當傳送速率越來越快時。
    互補攪亂碼分碼多工系統使用攪亂編碼技術與多輸入多輸出技術來降低系統對頻寬的消耗。
    第三,由於傳統多天線互補碼技術使用碼來將不同天線所傳輸的資料分離,所以傳統多天線互補碼技術並非絕對需要使用多天線,而使用多天線來實現傳統多天線互補碼技術是否符合效益還是一個問題。

    在本篇論文中我們介紹了互補攪亂碼分碼多工技術碼的設計以及互補攪亂碼分碼多工系統架構。我們證明了互補碼攪亂碼分碼多工技術在理想通道的況下能夠完美的克服干擾。我們設計了使用互補攪亂碼分碼多工技術所需使用的傳送端與接收端架構。最後我們使用電腦計算了互補攪亂碼分碼多工系統性能圖。

    由互補攪亂碼分碼多工系統性能圖我們可知互補攪亂碼分碼多工技術能使用在室內的環境並提供較高的傳送速率但支持較少的用戶數。互補攪亂碼分碼多工技術能使用在室外的環境並提供較低的傳送速率但支持較多的用戶數。

    We present a new type of complementary CDMA (code division multiple access) technology called complementary-coded scrambling multiple access (CCSMA) technology. The CCSMA system combines complementary CDMA technology, MIMO(multiple-input-multiple-output) technology and scrambling technique successfully. By utilizing complementary CDMA technology, the CCSMA system has ability to reject MI (multi-path interference) and MAI (multiple access interference). By using scrambling technology, the CCSMA system gets better frequency efficiency than SS (spread-spectrum) complementary CDMA systems do. By utilizing scrambling technique and space domain complementary coding to facilitate MIMO application the CCSMA system can reduce spectrum consumption.

    Comparing to previous works in complementary CDMA research area, the design of the MIMO-CCSMA system overcomes some drawbacks. First, the MIMO-CCSMA system uses channel characteristics to separate each antenna and improve the bandwidth efficency that we can say it is real MIMO complementary CDMA system. Conventional MIMO-SS complementary CDMA systems use code to separate different transmit antennas. As the signal sent by multiple antennas can be separated. Conventional MIMO-SS complementary CDMA systems can perform multiplexing transmission or diversity combining but the spectrum requirement is increased. This idea is actually not the main goal for utilizing MIMO technology that MIMO is utilized to reduce spectrum consumption.
    Second, the MIMO-CCSMA system utilizes scrambling technique and MIMO technology together to reduce spectrum consumption. Conventional MIMO-SS complementary CDMA systems use spread spectrum technique to perform interference rejection. SS technique consumes lot of bandwidth especially when data rate becomes higher.
    Third, it is not necessary for conventional complementary CDMA system to use MIMO antennas, because the signals sent by multiple antennas can be separated by complementary codes. It is still a question that if it is worth to apply MIMO to conventional MIMO-SS complementary CDMA system.

    In this thesis we introduce the MIMO-CCSMA code design and the MIMO-CCSMA system. We prove that the MIMO-CCSMA code can reject MI and MAI perfectly in an ideal condition and design the transmitter and receiver which are suitable for the MIMO-CCSMA system and finally show the numerical analysis of this system.

    With the performance results, we find the CCSMA system can possibly work in indoor environment with high data speed but support fewer users and the CCSMA can also work in outdoor environment with more users supported but a lower data rate for each user.

    中文摘要 i Abstract iii Acknowledgements v List of Figures ix List of Tables xiii Abbreviations xv Symbols xvii 1 Introduction 1 2 Complementary-Coded Scrambling Code Design 7 2.1 Code Structure Design 8 2.2 Multi-Path Interference Elimination 12 2.2.1 The Special Case that the Delay of a Multi-Path Return is Exactly Integer Multiple of Code Length Nt 18 2.3 Multiple-Access Interference Elimination 23 2.4 Bandwidth Eciency Comparison Between CCSMA System and Conventional Complementary CDMA system 26 3 Performance Analysis of Single User Complementary-Coded Scrambling Multiple Access (CCSMA) System with Multi-Path Fading 29 3.1 System Description 30 3.2 System Analysis 31 4 Performance Analysis of Multi-User Complementary-Coded Scrambling Multiple Access (CCSMA) with Multi-Path Fading 57 4.1 System Description 57 4.2 System Analysis 59 5 Numerical Performance Evaluation 95 5.1 Performance Evaluation in Indoor Oce Test Environment Channel A with Symbol Duration 100 ns 99 5.2 Performance Evaluation in Indoor Oce Test Environment Channel B with Symbol Duration 100 ns 113 5.3 Performance Evaluation in Outdoor to Indoor and Pedestrian Test Environment Channel A with Symbol Duration 100 ns 117 5.4 Performance Evaluation in Outdoor to Indoor and Pedestrian Test Environment Channel B with Symbol Duration 1000 ns 131 5.5 Performance Evaluation in Outdoor to Indoor and Pedestrian Test Environment Channel B with Symbol Duration 2000 ns 145 6 Discussions and Conclusions 159 6.1 Discussions 159 6.2 Conclusions 164 Bibliography 167 A Discussions on the Performance of the CCSMA System Utilizes Normal Inverse ZF Detection 169 A.1 CCSMA System Using 2 2 Antennas with Normal Inverse ZF Detection 172 A.2 The Performance Comparison between a CCSMA System with Normal Inverse ZF Detection and a CCSMA System with Pseudo Inverse ZF Detection 178 B Trying to Extend Extra Orthogonality of the CCSMA Code without Consuming Frequency Bandwidth 181 B.1 Try to Use Code Design to Separate Multiple Antennas 181 B.1.1 Multi-Path Interference Elimination 187 B.1.2 Multiple Access Interference Elimination 194 B.1.3 Exist problem 202

    [1] David Tse and Pramod Viswanath, “Fundamentals of Wireless Communication”, ISBN 0521845270, Cambridge University Press,2005.
    [2]Claude Oestges, and Bruno Clerckx, “MIMO Wireless Communications: From Real-World Propagation to Space-Time Code Design”, ISBN: 0123725356, Elsevier Science, 2007.
    [3]N. Suehiro, M. Hatori, “N-shift Cross-orthogonal Sequences”, IEEE Transactions on Information Theory, vol. 34, no. 1 ,pp. 143 -146, Jan. 1988.
    [4]Jin-Sian Lin, “Complementary Code Based CDMA Architecture”, MSc. Thesis, National Sun Yat-sen University, 2003.
    [5]Jhih-Wei Chen, “On Chip Level Space-Time-Frequency Complementary Codes”, MSc. Thesis, National Cheng Kung University, 2010.
    [6]Yi-Zhang Wu, “Chip Level Space-Time-Frequency Complementary Code Design”, MSc. Thesis, National Cheng Kung University, 2008.
    [7]Pei-Yu Yang, “Performance Analysis of MIMO-CDMA Systems with Space-Time-Frequency Coding”, MSc. Thesis, National Cheng Kung University, 2011.
    [8]John G. Proakis, “Digital Communications”, ISBN 0-07-232111-3, McGraw-Hill, 2001.
    [9]S. M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communications”, IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
    [10]V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time Block Codes From Orthogonal Designs”, IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456-1467, Jul. 1999.
    [11]H. Jafarkhani and N. Seshadri, “Super-orthogonal Space-time Trellis Codes”, IEEE Transactions on Information Theory, vol. 49, no. 4, pp. 937-950, April 2003.
    [12]L. Y. Song and A.G. Burr, “Differential Quasi-Orthogonal Space-Time Block Codes with Full Transmit Diversity”, IEEE 16th International Symposium on PIMRC 2005, vol. 1, pp. 6-10, Sept. 2005.
    [13]D. Gesbert, M. Shafi, Da-shan Shiu, P.J. Smith and A. Naguib, “From Theory to Practice: An Overview Of MIMO Space-time Coded Wireless Systems”, IEEE Journal on Selected Areas in Communications, vol. 21, no. 3, pp. 281 -302, Apr. 2003.
    [14]Tolga M. Duman and Ali Ghrayeb, “Coding for MIMO Communication Systems”, ISBN 978-0-470-02809-4, John Wiley & Sons Ltd, 2007.
    [15]Volker Kuhn, “Wireless Communications over MIMO Channels: Applications to CDMA and Multiple Antenna Systems”, ISBN-13 978-0-470-02716-5, John Wiley & Sons Ltd, 2006.
    [16]Q.H. Spencer, A.L. Swindlehurst and M. Haardt, “Zero-forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels”, IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 461 -471, Feb. 2004.
    [17]Marvin K. Simon, and Mohamed-Slim Alouini, “Digital Communication over Fading Channels”, ISBN 0-471-20069-7, Wiley, 2005.
    [18]International Telecommuication Union, “Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000”, 1997.

    下載圖示 校內:2017-08-27公開
    校外:2017-08-27公開
    QR CODE