簡易檢索 / 詳目顯示

研究生: 蘇庭弘
Su, Ting-Hong
論文名稱: 節能液壓混合車傳動系統之研究
A Study on Hydraulic Transmission System of an Energy Saving Hybrid Vehicle
指導教授: 施明璋
Shih, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 液壓蓄壓器可變量泵浦/馬達液壓混合動力車液壓混合車節能效益
外文關鍵詞: Accumulator, Variable pump/motor, Hydraulic hybrid vehicle, Energy saving efficiency
相關次數: 點閱:110下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統引擎車輛有兩種耗能缺失,一是煞車造成的動能損失,另一是引擎運作於低效率區,本文主旨在利用串聯式液壓混合車解決這兩種耗能問題。串聯式液壓混合車使用液靜壓傳動系統,藉由定量泵浦的工作特性迫使引擎運作於高效率區,並利用液壓蓄壓器作為儲存煞車動能之元件,以這兩種概念設計建構實驗平台,針對液靜壓傳動以及實車建構做為考量,逐步改良設計迴路,其次設計控制器與決策邏輯達成對於串聯式液壓混合車之操控,以此實驗平台完成動態行駛實驗;最後,以推導出之數學模式配合控制策略,模擬串聯式液壓混合重型車輛,討論液壓混合車之節能效益。

    Conventional vehicles with internal combustion engine have two defects which causing energy consumption. One is the loss of the braking energy, the other is low operating efficiency of internal combustion engine. The purpose of this article is to solve these two energy consumption problems with series hydraulic hybrid vehicle (SHHV). Series hydraulic hybrid vehicle uses a hydrostatic driving system. With the constant pump, the engine would be forced to operate at high efficient region, and the driving system uses hydraulic accumulator as energy saving device to save braking energy. The experimental platform would be constructed from the two concepts. To be aimed at hydrostatic transmission and construction of real vehicle to improve the circuit step by step. Next, designed controller and control logic to operate series hydraulic hybrid vehicle. As a result, the vehicle would be operated, and the experimental platform would run the dynamic driving test. Finally, series hydraulic hybrid vehicle have been simulated by combining mathematical model with control logic, then the energy saving of the SHHV would be discussed.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號說明 XIII 第一章 緒論 1 1-1 車輛節能策略 1 1-2 混和動力車之比較 5 1-3 研究動機 7 1-4 研究目的 8 1-5 本文架構 8 第二章 車輛驅動數學模式與實驗平台建構 9 2-1 車輛道路負載數學模型建構 9 2-1-1 空氣阻力 9 2-1-2 滾動阻力 11 2-2 傳統引擎車行駛數學模式 12 2-3 串聯式混合車數學模式與平台建構 14 2-3-1 定量泵浦 16 2-3-2 可變量泵浦/馬達 18 2-3-2-1 伺服閥 19 2-3-2-2 可變量泵浦/馬達 20 2-3-2-3 可變量泵浦與馬達模式 23 2-3-3 液壓蓄壓器 25 2-3-4 液壓傳動系統 30 2-4 並聯式混合車數學模式與平台建構 32 2-4-1 平台建構 32 2-4-2 數學模式 35 第三章 液靜壓傳動系統設計與量測 39 3-1 煞車能源回收 40 3-2 蓄壓器能源再利用 42 3-2-1 液壓沖擊 42 3-2-2 迴路之改良 43 3-2-3 蓄壓器能源再利用效率 46 3-3 引擎供給能量 48 3-3-1 供給可變量馬達 48 3-3-2 供給可變量馬達與充壓蓄壓器 49 3-3-3 充壓蓄壓器 51 第四章 液壓混合車驅動控制模式 53 4-1 控制器之設計 53 4-2 控制邏輯制定 56 4-2-1 行駛前進 59 4-2-2 前進煞車 60 4-2-3 行駛後退 61 4-2-4 後退煞車 62 4-2-5 怠速靜止 62 4-3 實驗平台行駛NEDC之耗能與節能效益評估 63 第五章 液壓混合車應用於重型車輛之評估 68 5-1 測試規則之建立 68 5-1-1 NEDC速度曲線 68 5-1-2 引擎選用 69 5-1-3 節能計算 70 5-1-3-1 油耗表現改善率 71 5-1-3-2 燃油節省率 71 5-2 傳統車輛行駛NEDC之耗能 72 5-3 串聯式液壓車行駛NEDC之耗能 75 5-4 串聯式液壓車使用高效率元件 80 5-5 節能效益評估 81 第六章 結論與建議 86 6-1 結論 86 6-2 建議 87 參考文獻 89 附錄 91

    [1]“Hydrid Brochure”, Innas BV, Netherlands.

    [2]Thomas D. Gillespie, “Fundamentals of Vehicle Dynamics”, Society of Automotive Engineers, Inc., 2000.

    [3]D. Cole, “Elementary Vehicle Dynamics”, course notes in Mechanical Engineering, The University of Michigan, 1972.

    [4]W.H. Li and S.H. Lam ,”Principles of Fluid Mechanics”, Addison Wesley Publishing Company, Inc.,1964,374p.

    [5]D.G. Shepherd, “Elements of Fluid Mechanics”, Harcourt, Brace and World, Inc., New York, 1965, 498p.

    [6]H.E.Meritt,”Hydraulic Control System”,John Willey & Sons Inc.1967

    [7]Rexroth "Electro-Hydraulic 4-Way Directional Servo Valve Model 4 WS 2 E.10… and 4 WSE 2 E. 10…(Series 4X)"

    [8]Parker “hydraulics series PVP variable volume, piston pumps“

    [9]Jr-Chian Jeng, “A Study of the Effect of an Accumulator on the Hydraulic Cylinder Velocity Control”, Master thesis, National Cheng Kung University, R.O.C., 2000.

    [10]G.R.Keller, “Fine-tune Accumulator Selection by Calculating Polytropic Exponent K”, Hydraulics& Pneumatics, Vol.35, 100-104p., February 1982.

    [11]H.Murrenhoff,”Systematic approach to the control of hydrostatic drives”, Institute of Fluid Power Transmission and Control, University of Technology Aachen, RWTH, Steinbachstrasse 53, Aug 1, 1999.

    [12]“Advisor User Manual”, NERL-DOE, 2000.

    [13]Kim A. Stelson,”Recognizing Inefficiency and Energy Loss in Fluid Power Systems.”, Mechanical Engineering and Director, CCEFP, University of Minnesota.

    [14]Jamie Taylorl, Win Rampen, Alasdair Robertson, Niall Caldwell, ”Digital Displacement Hydraulic Hybrids.” Artemis Intelligent Power Ltd, 24 May 2011.

    [15]Peter A.J. Achten, Marc P.A. Schellekens, Hubertus Murrenhoff, Michael Deeken,”Efficiency and Low Speed Behavior of the Floating Cup Pump.”, SAE International,2004.

    [16]E.Tzirakis, K.Pitsas, F.Zannikos, and S.Stournas, “Vehicle Emissions and Driving Cycles:Comparison of the Athens Driving Cycle (ADC) with ECE-15 and European Driving Cycle (EDC)”, Global NEST Journal, Vol 8, No 3, pp 282-290, 2006.

    [17]http://zh.scribd.com/doc/99115737/Floating-Cup-Principle

    [18]Dr.ir.Peter Achten,"Design and Testing of an Axial Piston Pump Based on the The Netherla Floating Cup Principle", The Netherlands.

    [19]Cemre Yigen,” Control of a Digital Displacement Pump”, Master Thesis, Spring 2012.

    [20]Luke Wadsley,” Optimal System Solutions Enabled by Digital Pumps”, Sauer-Danfoss (US) Company.

    [21]Karl-Erik Rydberg, “Energy Efficient Hydraulic Hybrid Drives”, Scandinavian International Conference on Fluid Power, June, 2009.

    下載圖示 校內:2015-08-13公開
    校外:2015-08-13公開
    QR CODE