| 研究生: |
游有方 Yu, Yu-Fang |
|---|---|
| 論文名稱: |
關廟層砂岩之力學特性 |
| 指導教授: |
李德河
Lee, Der-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 直接剪力 、元素分析 、電子顯微鏡 、崩解耐久性 、關廟層砂岩 |
| 外文關鍵詞: | mechanical behavior, slope stability analysis, soft rock, mudstone, psammite, sandstone |
| 相關次數: | 點閱:138 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我國西南部麓山帶於嘉義及台南一帶主要出露之地層為二重溪層及六雙層等沉積層,此類沉積岩地層多為細至中粒砂岩、泥岩及其互層所組成。由於其成岩時間較短、膠結性不良以及遇水容易產生弱化、崩解、回漲等現象,導致抵抗外在環境侵蝕能力較差。
本文針對我國西南部地區出露於台南縣關廟鄉、龍崎鄉一帶,整合於南化泥岩之上之關廟層軟弱砂岩進行基本物理性質、電子顯微鏡(SEM)、元素分析(EDS)、消散耐久性試驗、超音波試驗、直接剪力試驗、單壓試驗、透水試驗、應變控制及不同應力路徑之三軸壓密不排水試驗。
由試驗結果顯示,此地區所取得之試體屬於ISRM (International Society of Rock Mechanics)所定義之軟弱岩石。乾燥之關廟層砂岩之單壓強度約為2 Mpa,且隨含水量之增加而驟降約80%。由崩解耐久性試驗之結果指出,關廟層砂岩極易受乾濕之循環而產生崩解。根據砂、泥岩互層直剪試驗的結果顯示,在飽和狀態下,砂、泥岩互層之尖峰及殘餘力學參數皆低於砂岩及泥岩。根據三軸透水試驗結果顯示其滲透係數約為5.92 ×10-5 cm/sec。
而根據不同應力路徑之三軸壓密不排水試驗得知當圍壓為增加之趨勢,試體之抗剪強度增加,且體積變化呈現剪縮性的趨勢。當總平均圍壓為減低之趨勢時,試體之抗剪強度降低,且體積變化趨勢呈現剪脹性之趨勢。
由試驗結果及驗證相關學者提出之破壞準則後,歸納出乾燥之關廟層砂岩之脆延性轉換壓力約介於7-8 MPa 之間。再輔以基本物性之結果及電子顯微鏡及元素分析之微觀的角度來描述關廟層之力學特性。
The purpose of this project is to study the mechanical properties of soft rocks such as sandstone、psammite and mudstone in southern Taiwan which was passed through by highway. A series of tests including triaxial test is be performed to study the mechanical behaviors for soft rocks with different contents. The investigation on the mechanical properties of sandstone in southern Taiwan use a series of tests including general physical test、uniaxial compressive test、derect shear test and tradition triaxial test. From the mechanical properties of rocks , we know that is the part of soft rock in ISRM (Internatopnal Society of Rock Mechanics). In the confine stress(σ3 ≒6.0Mpa) the fracture shows the brittle behavior , but by the increase of the confine stress the fracture shows the ductile behavior. In addition , the volume is compressed in advance then expansion in the low confine stress like the overconsolidation condition , the excess pore water pressure is right then negative. In the high confine stress , the volume is compressed like normal concolidation condition. Furthermore, the database of soft rocks in southern Taiwan will be established for slope stability analysis, and the observation of the slope along the highway will be used for feedback analysis.
1.Barton, M. E., (1993), “Cohesive sands: The natural transition from
sands to sandstones”, Geotechnical Engineering of Hard Soil-Soft
Rocks, Anagnostopoulos et al. (end), 1993, Balkema, Rotterdam, ISBN
90 5410 3442, pp.367-374.
2.Bell, F. G. and Culshaw, M. G., (1993), “A survey of the geotechnical
properties of some relatively weak Triassic sandstone”, The
Engineering Geology of Weak Rock, Cripps et al. (eds), Balkema,
Rotterdam. ISBN 90 6191 1672, pp.139-148.
3.Chiu, H., Johnston I.W. and Donald I. B., (1983), “Appropriate
techniques for triaxial testing of saturated soft rock”, Int. J. Rock Mech.
Sci. and Geomech. Abstr., Vol.20, No.3, pp.107-120.
4.Dobereiner, L., De Freitas, M. H., (1986), “Geotechnical Properties of
Weak sandstones”, Geotechnique, Vol. 36, No.1, pp.79-94.
5.Donath, F. A., (1976), “Some Information Squeezed out of Rock”,
American Scientist, Vol.58,pp.54-72.
6.Heok, E. and Brown, E. T. (1980), “Underground Excavation in Rock”,
The Institution of Mining and Metallurgy, London.
7.Hight, D.W. and Higgins K.G.,(1995), “An approach to the prediction
of ground movements in engineering practice: Background and
application”, Pre-failure Deformation of Geomaterials, Shibuya,
Mitachi and Miura (eds), Balkema, Rotterdam, pp.909-945.
8.Johnston, I. W. and Chiu, H. K., (1984), “Strength of weathered melbou
me mudstone.”, Journal of Geotechnical Engineering, Vol. 110, no 7,
pp.177-183.
9.Johnston, I. W., (1993), “Soft Rock Engineering”, Comprehensive Rock
Engineering, ED.J.A. Hudson, Vol.1, pp.367-393.
10.Kim, Y. S., Tatsuoka, F. and Ochi, K., (1994), “Deformation
characteristics at small strains of sedimentary soft rocks by triaxial
compression tests”, Geotechnique, Vol.44-3, pp.461-478.
11.Ko, H. Y. and Scott, R. F., (1967), “Deformation of sand in shear”,
Journal of the Soil Mechanics and Foundation Divisions, ASCE, Vol.93,
No.Sm5, Proc. Paper 5470, pp.283-310.
12.Lade, P. V. (1994), “Rock Strength Criteria: The Theories and the
Evidence”, Comprehensive Rock Engineering: Principles, Practice &
Project,Pergamon Press Oxford, Ch. 11, pp.255-283.
13.Lin, M. L. and Hung, J. J., (1982), ”The Influence of Moisture Content
on Mechanical Properties of Some Sedimentary Rocks in Taiwan”,
proc, of Civil Eng., National Taiwan University, Taipei, Taiwan.
14.Lo presti D. C. F., Barla M., Barla G., Pallara, O., and Plescia A.,
(1998), “Development and use of a triaxial cell for soft rocks”,
Department of Structure Engineering, Politecnico di Torino, Italy.
15.Obert, L. and Duvall, W. I. (1967), Rock Mechanics and the Design of
structure in Rock, New York, Wiley, pp.650.
16.Oliverira, R., (1993), “Weak Rock Materials”, The Engineering
Geology of Weak Rock, Cripps et al. (eds.), Balkma, Rotterdam,
pp.5-15.
17.Perkins, R. D., Green, S. J., and Friedam, M. (1970), “Uniaxial Stress
Behavior of Porphynitic Tonalite at Strain Rates to 103 s-1”, Int. J. Rock
Mech. Min. Sci., Vol.7, pp.327-535.
18.Petley D., Jones M., Fan C. and Stafford C. ea al. (1993),
“Deformation and Fabric changes in weak fine-grained rocks during
high pressure consolidation and shear”, Geotechnical Engineering of
Hard Soil-Soft Rocks, Anagnostopoulos et al. (eds), Balkema,
Rotterdam, ISBN 90 51403443, pp.734-743.
20.Scholz, C. H. (1968a), “The frequency-Magnitude Relation of
Microfracturing in Rock and its Relation to Earthquakes”, Bulletin of
the Seismo- logical Society of America, Vol.58 No.1, pp.339-415.
21.Scholz, C. H. (1968b), “Microfracturing and the Inelastic Deformation
of Rock in Compression”, J. of Geophysical Research, Vol.73, No.4, pp.
1417-1432.
22.Scholz, C. H. (1968c), “Experimental Study of the Fracturing Process
in Brittle Rock”, J. of Geophysical Research, Vol.73, No.4, pp.
1447-1454.
23.Shibuya, S., Tatsuoka, F., Teachavorasin-skun, S., Kong, X. J., Abe, F.,
Kim, Y. S. and Park, C. S., (1992), “Elastic deformation properties of
geomaterials”, Soil and Foundation, Vol.32-3, pp.26-46.
24.Tatsuoka F. and Kohata Y., (1995), “Stiffness of hard soils and soft
rocks in engineering application”, Pre-failure Deformation of
Geomaterials, Shibuya, Mitachi and Miura (eds), Balkema, Rotterdam,
pp.947-1061.
25.Yoshinaka, R. and Yamabe, T., (1981), “Deformation Behavior of Soft
Rocks”, Weak Rock Soft Fractured and Weatherd Rock, Vol.1, Edited
by Koichi Akai and Masao Hayashi and Yuichi Nishimatsu, pp.87-92.
26. Yoshinaka R., Osada M. and Tran T. V., (1996), “Deformation
behavior of soft rocks during consolidation-undrained cyclic triaxial
testing”, Int. J. Rock Mech. Sci. and Geimech. Abstr., Vol.33, No.6,
pp.557-572.
27.林景民(2001), “軟弱岩石之應力應變行為與屈服行為”, 國立交通
大學土木工程研究所碩士論文.
28.林宏明(2000), “軟岩在不同環境及應力條件下之力學行為”, 國立
成功大學土木工程研究所碩士論文.
29.吳建宏(1998), “單軸應力狀態下木山層砂岩之破壞特性研究”, 國
立成功大學土木工程研究所碩士論文.
30.李德河、紀雲曜,”岩石試體之單壓強度特性研究”, 1992 岩盤工程研
討會論文集,第71-84 頁。
31.李德河、紀雲曜、謝文元,”不同溫度、壓力下泥岩之力學行為研究”,
1996 岩盤工程研討會論文集,第333-342 頁。
32.李怡德(1996), “軟弱砂岩弱化研究”, 國立台灣大學土木工程研究
所碩士論文.
33.耿文博(1981), “台南以東丘陵區之地質”, 經濟部中央地質調查所
彙刊, 第一號, pp.1-31.
34.國立成功大學公共工程研究中心,"龍崎鄉崎頂村兵仔舍地滑地地
質調查報告",台南縣龍崎鄉公所。
35.黃燦輝(1996), “軟弱岩石隧道問題研究(Ⅰ)”, 行政院國家科學委
員會專題研究計劃成果報告.
36.黃慧儀(1999), “軟弱砂岩之三軸試驗”, 國立交通大學土木工程研
究所碩士論文.
37.鄒子廉(1993), “台灣地區隧道地質災害模式之研究”, 國立中央大
學應用地質研究所碩士論文.
38.鄭富書、李怡德及黃燦輝(1996), “軟弱砂岩遇水軟化行為試驗研
究”,1996 岩盤工程論文集, 國立台灣大學, 台北, pp.373-382.
39.廖洪鈞、余文芳(1993), “徑向應力路徑對台北盆地沉泥質黏土強度行為之影響”, 中國土木水利工程學刊, 第五卷, 第三期.132
40.經濟部中央地質調查所,"龍崎兵仔舍滑崩災害",台灣山崩災害專輯,第125~131 頁。
41.蔡攀鰲(1996), “工程地質學”, 增訂四版。
42.赤井浩一(1993), ”General aspects of soft rock”,土基礎,第41 期,
第1~6 頁。(日文)