簡易檢索 / 詳目顯示

研究生: 王奕翔
Wang, Yi-Xiang
論文名稱: 有限元素法於熱流場模擬之數值驗證
Numerical Validation of the Finite Element Method for Thermal Flow Field Simulation
指導教授: 張晉愷
Chang, Chin-Kai
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 49
中文關鍵詞: 有限元素法不可壓縮流熱傳導計算流體力學數值模擬
外文關鍵詞: Finite Element Method, Incompressible Flow, Heat Transfer, CFD, Numerical Simulation
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對計算流體力學(Computational Fluid Dynamics, CFD)領域進行數值模擬分析,旨在應用有限元素法(Finite Element Method, FEM)求解流體與熱傳守恆方程式,涵蓋質量守恆、動量守恆及能量守恆等三大基本方程。此類守恆式的數值求解對於解析流體運動與熱傳輸相關工程問題具有關鍵意義。
    研究首先選擇適當之測試案例,推導其解析解,並建立以有限元素法為基礎之數值模擬程式,透過與解析解之誤差分析驗證數值方法之精度與穩定性。接著,以經典Lid-Driven Cavity問題作為基準案例,與文獻結果進行比對,以檢驗本研究模型在流體行為再現及流場結構預測上的可靠性。最後,將自建程式所得之模擬結果與商業軟體Simcenter STAR-CCM+進行比較,以進一步評估本方法於物理合理性與工程應用層面的可行性。
    模擬結果顯示,在適當的網格分佈與邊界條件設定下,有限元素法所得之結果能準確再現經典剪力驅動迴流結構,並於速度與溫度場分佈上呈現與文獻及商用軟體一致之趨勢。雖局部區域仍存在一定差異,然整體物理場分佈合理且穩定,顯示本研究所建構之數值模型具良好準確性與可擴展性。綜上所述,本研究建立之有限元素模擬架構具備穩定性與合理性,可為後續數值方法改良及簡單熱流耦合應用提供初步參考。

    This thesis presents the development of a self-implemented finite element method (FEM) solver for incompressible flow coupled with heat transfer. The solver is constructed from the governing equations to the numerical implementation, allowing explicit control over spatial discretization, time integration, and pressure–velocity coupling. The main objective is not only to obtain simulation results, but also to clearly examine the numerical behavior and applicability of the adopted schemes. The solver is assessed through three levels of verification and validation: (i) numerical verification using manufactured analytical solutions with systematic grid refinement, (ii) benchmark validation using the classical lid-driven cavity flow at Reynolds numbers Re = 100, 400, and 1000, and (iii) cross-comparison with the commercial CFD software Simcenter STAR-CCM+ under matched geometry, mesh resolution, boundary conditions, and time-step settings. The benchmark results show that the present solver accurately reproduces the primary vortex and corner eddies in the lid-driven cavity, and the centerline velocity profiles agree well with reference data from the literature. Manufactured-solution tests confirm the expected spatial convergence behavior, providing quantitative evidence of the numerical correctness of the implementation. In the coupled thermo-fluid cavity comparisons with STAR-CCM+, strong agreement is observed at low Reynolds number in both flow and temperature fields, including overall distributions and monitoring-line profiles. As the Reynolds number increases, discrepancies gradually appear in localized extrema and near-wall gradient regions, reflecting intrinsic limitations of the current numerical strategy under convection-dominated conditions. These differences are mainly attributed to the accumulation of splitting errors in the fractional-step pressure–velocity coupling and the increased sensitivity of second-order Adams–Bashforth extrapolation for convective terms at higher Reynolds numbers. Overall, the developed FEM solver demonstrates stable numerical behavior, reliable reproduction of key physical features, and consistent convergence properties for low-to-moderate Reynolds-number thermo-fluid problems. The present work also clarifies the solver’s current applicability range and provides a clear basis for future improvements targeting more strongly convection-dominated and multiphysics simulations.

    摘要 i 誌謝 vi 目錄 vii 表目錄 viii 圖目錄 ix 第一章 前言與文獻回顧 1 1.1 有限元素法 2 1.2 有限元素法於流體力學之發展 3 1.3 有限元素法於熱傳與對流之應用 4 1.4 研究動機 5 第二章 研究方法 7 2.1 控制方程式 7 2.2 時間離散化 8 2.3 空間離散化 11 第三章 研究結果與討論 14 3.1 解析解之誤差分析 14 3.2 Lid-driven Cavity流場模擬與文獻驗證 20 3.3 自訂方腔流模擬與商用軟體結果比較分析 24 第四章 結論與未來展望 33 4.1 結論 33 4.2 未來展望 34 參考文獻 35

    [1] Reddy, J. N., & Gartling, D. K., The finite element method in heat transfer and fluid dynamics, CRC Press, Boca Raton, 2010.
    [2] Ji, G., Zhang, M., Lu, Y., & Dong, J., The basic theory of CFD governing equations and the numerical solution methods for reactive flows, In Computational Fluid Dynamics – Recent Advances, New Perspectives and Applications, IntechOpen, London, UK, p. 1‑30, 2023.
    [3] Nithiarasu, P., & Zienkiewicz, O. Z., The finite element method for heat and fluid flow. In International Heat Transfer Conference 13, Begel House Inc., New York, p. 17, 2006.
    [4] Smith, G. D., Numerical solution of partial differential equations: finite difference methods, Oxford university press, Oxford, 1985.
    [5] Versteeg, H. K., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education India, Harlow, p. 503, 2007.
    [6] Ferziger, J. H., Perić, M., & Street, R. L., Computational methods for fluid dynamics, Springer, New York, 2019.
    [7] Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z., The Finite Element Method: Its Basis and Fundamentals, Elsevier, Amsterdam, 2005.
    [8] Courant, R., Variational Methods for the Solution of Problems of Equilibrium and Vibrations, Lecture Notes in Pure and Applied Mathematics, 1-1, 1994.
    [9] Zienkiewicz, O. C., & Cheung, Y. K, The finite element method in structural and continuum mechanics: numerical solution of problems in structural and continuum mechanics, 1967.
    [10] Belytschko, T., Liu, W. K., Moran, B., & Elkhodary, K., Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, Hoboken, p. 832, 2014.
    [11] Zienkiewicz, O. C., & Taylor, R. L., The Finite Element Method for Solid and Structural Mechanics, Elsevier, Amsterdam, 2005.
    [12] Reddy, J. N., An Introduction to the Finite Element Method (Vol. 3), McGraw-Hill, New York, 2005.
    [13] Hughes, T. J., The finite element method: linear static and dynamic finite element analysis, Courier Corporation, 2003.
    [14] Brenner, S. C., The Mathematical Theory of Finite Element Methods, Springer, New York, 2008.
    [15] Brezzi, F., & Fortin, M., Mixed and Hybrid Finite Element Methods (Vol. 15), Springer Science & Business Media, New York, 2012.
    [16] Taylor, C., & Hood, P., "A Numerical Solution of the Navier-Stokes Equations Using the Finite Element Technique", Computers & Fluids, 1(1), p. 73 100, 1973.
    [17] Brooks, A. N., & Hughes, T. J., "Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations", Computer Methods in Applied Mechanics and Engineering, 32(1 3), p. 199 259, 1982.
    [18] Hughes, T. J., Franca, L. P., & Mallet, M., "A New Finite Element Formulation for Computational Fluid Dynamics: I. Symmetric Forms of the Compressible Euler and Navier-Stokes Equations and the Second Law of Thermodynamics", Computer Methods in Applied Mechanics and Engineering, 54(2), p. 223-234, 1986.
    [19] Tezduyar, T. E., "Stabilized Finite Element Formulations for Incompressible Flow Computations", Advances in Applied Mechanics, 28, p. 1-44, 1991.
    [20] Codina, R., "Comparison of Some Finite Element Methods for Solving the Diffusion-Convection-Reaction Equation", Computer Methods in Applied Mechanics and Engineering, 156(1 4), p. 185 210, 1998.
    [21] Zienkiewicz, O. C., & Taylor, R. L., The Finite Element Method, McGraw-Hill, New York, 1977.
    [22] Reddy, J. N., An Introduction to the Finite Element Method, McGraw-Hill, New York, 1993.
    [23] Lewis, R. W., Nithiarasu, P., & Seetharamu, K. N., Fundamentals of the Finite Element Method for Heat and Fluid Flow, John Wiley & Sons, Chichester, 2004.
    [24] Codina, R., "Stabilized Finite Element Approximation of Transient Incompressible Flows Using Orthogonal Subscales", Computer Methods in Applied Mechanics and Engineering, 191(39 40), p. 4295 4321, 2002.
    [25] Tezduyar, T. E., "Finite Elements Methods for Fluid Dynamics with Moving Boundaries and Interfaces", In Encyclopedia of Computational Mechanics, 3, p. 545 578, 2004.
    [26] Smolyanov, I., Shmakov, E., Butusov, D., & Khalyasmaa, A. I., "Review of Modeling Approaches for Conjugate Heat Transfer Processes in Oil-Immersed Transformers", Computation, 12(5), p. 97, 2024.
    [27] Budkowska, B. B., & Kreja, I., "Fixed Finite Element Model of Heat Transfer with Phase Change-Part I. Theoretical Formulation and Numerical Algorithm", International Journal of Offshore and Polar Engineering, 7(2), p. 199, 1997.
    [28] Armfield, S., & Street, R., "An Analysis and Comparison of the Time Accuracy of Fractional-Step Methods for the Navier–Stokes Equations on Staggered Grids", International Journal for Numerical Methods in Fluids, 38(3), p. 255 282, 2002.
    [29] He, Y., & Sun, W., "Stability and convergence of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations", SIAM Journal on Numerical Analysis, 45(2), p. 837-869, 2007.
    [30] Weinan, E., & Liu, J. G., "Projection Method I: Convergence and Numerical Boundary Layers", SIAM Journal on Numerical Analysis, 32(4), p. 1017 1057, 1995.
    [31] Guermond, J. L., Minev, P., & Shen, J., "An overview of projection methods for incompressible flows", Computer methods in applied mechanics and engineering, 195(44-47), p. 6011-6045, 2006.
    [32] Roache, P. J., "Code Verification by the Method of Manufactured Solutions", Journal of Fluids Engineering, 124(1), p. 4 10, 2002.
    [33] Salari, K., & Knupp, P., Code Verification by the Method of Manufactured Solutions (No. SAND2000-1444), Sandia National Lab.(SNL-NM), Albuquerque, NM; Sandia National Lab.(SNL-CA), Livermore, CA, 2000.
    [34] Eymard, R., Gallouët, T., & Herbin, R., "Finite Volume Methods", In Handbook of Numerical Analysis, 7, p. 713 1018, 2000.
    [35] Roache, P. J., Verification and Validation in Computational Science and Engineering (Vol. 895), Hermosa, Albuquerque, NM, p. 895, 1998.
    [36] Donea, J., & Huerta, A., Finite Element Methods for Flow Problems, John Wiley & Sons, Chichester, 2003.
    [37] Guermond, J. L., & Shen, J., "Velocity-correction projection methods for incompressible flows", SIAM Journal on Numerical Analysis, 41(1), p. 112-134, 2003.
    [38] Codina, R., "Pressure stability in fractional step finite element methods for incompressible flows", Journal of Computational Physics, 170(1), p. 112-140, 2001.
    [39] Guermond, J., & Shen, J., "On the error estimates for the rotational pressure-correction projection methods", Mathematics of Computation, 73(248), p. 1719-1737, 2004.
    [40] Codina, R., "Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods", Computer methods in applied mechanics and engineering, 190(13-14), p. 1579-1599, 2000.
    [41] Ghia, U., Ghia, K. N., & Shin, C. T., "High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method", Journal of Computational Physics, 48(3), p. 387 411, 1982.
    [42] Guermond, J. L., Minev, P., & Shen, J., "An overview of projection methods for incompressible flows", Computer methods in applied mechanics and engineering, 195(44-47), p. 6011-6045, 2006.
    [43] Perot, J. B., "An analysis of the fractional step method", Journal of Computational Physics, 108(1), p. 51-58, 1993.
    [44] Karniadakis, G. E., Israeli, M., & Orszag, S. A., "High-order splitting methods for the incompressible Navier-Stokes equations", Journal of computational physics, 97(2), p. 414-443, 1991.

    QR CODE