研究生: |
林瑞桓 Lin, Ruei-Huan |
---|---|
論文名稱: |
第一原理討論摻雜後陰極材料磷酸鋰鐵的材料性質變化 Effects of metal doping on the material properties of LiFePO4 cathode material by first-principle calculation |
指導教授: |
陳鐵城
Chen, Tei-Chen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 鋰離子電池 、金屬摻雜 、磷酸鋰鐵 、能隙 、鋰離子擴散 |
外文關鍵詞: | lithium-ion batteries, metal doping, LiFePO4, band gap, diffusion |
相關次數: | 點閱:113 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,具有規則橄欖石結構的LiFePO4被視為非常具有發展潛力的鋰離子電池陰極材料,LiFePO4具有高工作電壓、成本低、無汙染等諸多優點,但是LiFePO4電子導電性不佳及鋰離子擴散係數低的缺點限制LiFePO4的應用,摻雜金屬離子是一種有效改善材料性質的方法,本研究以第一原理為理論基礎,討論摻雜金屬離子後LiFePO4的材料性質變化。
本研究利用VASP量子化學計算軟體模擬摻雜金屬離子後LiFePO4的材料性質變化,模擬結果顯示,摻雜金屬離子可有效的抑制鋰離子在脫嵌過程中產生的體積變化,有助於提升材料的使用壽命。鋰離子的擴散與晶格的間隙有關,量測摻雜金屬離子後的晶格間隙皆呈現變大的趨勢,代表摻雜金屬離子可提升鋰離子的擴散速率。由能隙結構圖發現摻雜金屬離子可縮小LiFePO4的能隙大小,表示摻雜金屬離子可有效的提升LiFePO4的導電性質,由電子狀態密度圖發現能隙縮小的主因,在於摻雜的金屬離子在費米能附近有局域性的電子分佈,使價電帶與導電帶電子的能量差距縮小,其中以摻雜V離子的改善效果最佳,能隙約為0.2068 eV遠小於未摻雜LiFePO4的能隙(0.9245 eV)。
In the recent years, LiFePO4 materials with the olivine structure have become a promising cathode material for the lithium ion battery. LiFePO4 has a lot of advantage, such as high operation voltage, long operational life, low materials cost, environmental friendliness. However, disadvantage of low electronic conductivity and poor ionic conductivity greatly restricts the commercial applications of LiFePO4. Metal doping is one of the effective way to improve materials properties of the LiFePO4. In this study, the materials properties of LiFePO4 after doping metal ions were performed by first-principles calculation. It was found that doping metal atoms to LiFePO4 can significantly reduce the volume variation during the lithiation/ delithiation cycles. Consequently, the working life of cathode materials can be improved. The metal doping in LiFePO4 leads to the increase of hopping distance. This expansion effect would benefit the Li ion diffusion. The effects of metal doping on the electronic structures were performed by the investigation of band structure. The results show that doping metal ion into LiFePO4 induces a narrowing of the band gap, which could benefit to improve the electronic conductivity. From the analysis of the density of states, we can find the energy bands near the Fermi energy were mainly attributed to the doping metal atom. This result leads to the decrease of energy gap between the valence band and conduction band. In this work, V-ion doping shows an optimum effect than other elements under study. The band gap of V-ion doping (0.2068eV) is much smaller than the band gap of un-doped LiFePO4 (0.9245eV).
參考文獻
[1] 經濟部工業局, "二次電池設計技術與應用," 2000.
[2] 蔡英文 and 黃炳照, "鋰離子電池陰極材料之研究與發展
" CHEMISTRY, vol. 62, p. 251~262, 2004.
[3] 黃可龍、王兆翔、劉素琴, "鋰離子電池原理與技術," 五南圖書出版股份有限公司, 2010.
[4] V. A. Streltsov, E. L. Belokoneva, V. G. Tsirelson, and N. K. Hansen, "MULTIPOLE ANALYSIS OF THE ELECTRON-DENSITY IN TRIPHYLITE, LIFEPO4, USING X-RAY-DIFFRACTION DATA," Acta Crystallographica Section B-Structural Science, vol. 49, pp. 147-153, Apr 1993.
[5] S. L. Shang, Y. Wang, Z. G. Mei, X. D. Hui, and Z. K. Liu, "Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): a comparative first-principles study," Journal of Materials Chemistry, vol. 22, pp. 1142-1149, 2012.
[6] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho-olivines as positive-electrode materials for rechargeable lithium batteries," Journal of the Electrochemical Society, vol. 144, pp. 1188-1194, Apr 1997.
[7] H. Lin, Y. W. Wen, C. X. Zhang, L. L. Zhang, Y. H. Huang, B. Shan, et al., "A GGA+U study of lithium diffusion in vanadium doped LiFePO4," Solid State Communications, vol. 152, pp. 999-1003, Jun 2012.
[8] L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, et al., "Development and challenges of LiFePO4 cathode material for lithium-ion batteries," Energy & Environmental Science, vol. 4, pp. 269-284, Feb 2011.
[9] Y. H. Huang, H. B. Ren, S. Y. Yin, Y. H. Wang, Z. H. Peng, and Y. H. Zhou, "Synthesis of LiFePO4/C composite with high-rate performance by starch sol assisted rheological phase method," Journal of Power Sources, vol. 195, pp. 610-613, Jan 2010.
[10] I. Belharouak, C. Johnson, and K. Amine, "Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4," Electrochemistry Communications, vol. 7, pp. 983-988, Oct 2005.
[11] C. Y. Ouyang, D. Y. Wang, S. Q. Shi, Z. X. Wang, H. Li, X. J. Huang, et al., "First principles study on NaxLi1-xFePO4 as cathode material for rechargeable lithium batteries," Chinese Physics Letters, vol. 23, pp. 61-64, Jan 2006.
[12] G. X. Wang, S. Bewlay, S. A. Needham, H. K. Liu, R. S. Liu, V. A. Drozd, et al., "Synthesis and characterization of LiFePO4 and LiTi0.01Fe0.99PO4 cathode materials," Journal of the Electrochemical Society, vol. 153, pp. A25-A31, 2006.
[13] S. Y. Chung, J. T. Bloking, and Y. M. Chiang, "Electronically conductive phospho-olivines as lithium storage electrodes," Nature Materials, vol. 1, pp. 123-128, Oct 2002.
[14] H. Shu, X. Wang, W. Wen, Q. Liang, X. Yang, Q. Wei, et al., "Effective enhancement of electrochemical properties for LiFePO4/C cathode materials by Na and Ti co-doping," Electrochimica Acta, vol. 89, pp. 479-487, Feb 1 2013.
[15] N. A. Siddique, A. M. Allen, P. P. Mukherjee, and F. Liu, "Simulation of effect of interfacial lithium flux on miscibility gap in non-equilibrium phase transformation of LiFePO4 particles," Journal of Power Sources, vol. 245, pp. 83-88, Jan 1 2014.
[16] C. Lai, Q. Xu, H. Ge, G. Zhou, and J. Xie, "Improved electrochemical performance of LiFePO4/C for lithium-ion atteries with two kinds of carbon sources," Solid State Ionics, vol. 179, pp. 1736-1739, Sep 30 2008.
[17] Z. P. Ma, G. J. Shao, G. L. Wang, J. P. Du, and Y. Zhang, "Electrochemical performance of Mo-doped LiFePO4/C composites prepared by two-step solid-state reaction," Ionics, vol. 19, pp. 437-443, Mar 2013.
[18] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. M. Goupil, et al., "Porous olivine composites synthesized by sol-gel technique," Journal of Power Sources, vol. 153, pp. 274-280, Feb 2006.
[19] J. K. Kim, G. Cheruvally, and J. H. Ahn, "Electrochemical properties of LiFePO4/C synthesized by mechanical activation using sucrose as carbon source," Journal of Solid State Electrochemistry, vol. 12, pp. 799-805, Aug 2008.
[20] P. Hohenberg and W. Kohn, "INHOMOGENEOUS ELECTRON GAS," Physical Review B, vol. 136, pp. B864-+, 1964.
[21] W. Kohn and L. J. Sham, "SELF-CONSISTENT EQUATIONS INCLUDING EXCHANGE AND CORRELATION EFFECTS," Physical Review, vol. 140, pp. 1133-&, 1965.
[22] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, "ITERATIVE MINIMIZATION TECHNIQUES FOR ABINITIO TOTAL-ENERGY CALCULATIONS - MOLECULAR-DYNAMICS AND CONJUGATE GRADIENTS," Reviews of Modern Physics, vol. 64, pp. 1045-1097, Oct 1992.
[23] P. E. Blochl, "PROJECTOR AUGMENTED-WAVE METHOD," Physical Review B, vol. 50, pp. 17953-17979, Dec 1994.
[24] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, et al., "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation," Physical Review B, vol. 46, pp. 6671-6687, 09/15/ 1992.
[25] S. Q. Yang, T. R. Zhang, Z. L. Tao, and J. Chen, "First-principles Study on Metal-doped LiNi0.5Mn1.5O4 as a Cathode Material for Rechargeable Li-Ion Batteries," Acta Chimica Sinica, vol. 71, pp. 1029-1034, Jul 2013.
[26] J. Jiang, C. Ouyang, H. Li, Z. Wang, X. Huang, and L. Chen, "First-principles study on electronic structure of LiFePO4," Solid State Communications, vol. 143, pp. 144-148, Jul 2007.
[27] D. Morgan, A. Van der Ven, and G. Ceder, "Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials," Electrochemical and Solid State Letters, vol. 7, pp. A30-A32, 2004.
[28] S. Q. Wu, Z. Z. Zhu, Y. Yang, and Z. F. Hou, "Effects of Na-substitution on structural and electronic properties of Li2CoSiO4 cathode material," Transactions of Nonferrous Metals Society of China, vol. 19, pp. 182-186, Feb 2009.
[29] J. Ma, B. Li, H. Du, C. Xu, and F. Kang, "Effects of tin doping on physicochemical and electrochemical performances of LiFe1-xSnxPO4/C (0 <= x <= 0.07) composite cathode materials," Electrochimica Acta, vol. 56, pp. 7385-7391, Aug 30 2011.
[30] 莊柏峰, "以第一原理探討參雜後磷酸鋰鐵之電性結構," 2013.
[31] J. Xu and G. Chen, "Effects of doping on the electronic properties of LiFePO4: A first-principles investigation," Physica B-Condensed Matter, vol. 405, pp. 803-807, Feb 2010.
[32] H. B. Shu, X. Y. Wang, W. C. Wen, Q. Q. Liang, X. K. Yang, Q. L. Wei, et al., "Effective enhancement of electrochemical properties for LiFePO4/C cathode materials by Na and Ti co-doping," Electrochimica Acta, vol. 89, pp. 479-487, Feb 2013.