簡易檢索 / 詳目顯示

研究生: 廖主瑋
Liao, Chu-Wei
論文名稱: 表面不對稱球體的自組裝行為研究
Manipulative Self-Assembly Behaviors of Janus Particles
指導教授: 郭昌恕
Kuo, Chang-shu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 99
中文關鍵詞: 雙邊不對稱球體自組裝表面官能基表面電位粒徑分布
外文關鍵詞: Asymmetric Janus Particles, Self-Assembly, Surface Functionalities, Zeta Potential, Particle Size Distribution
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中探討了帶有不同比例表面官能基之雙邊不對稱球體的製備並針對它們的自組裝行為進行分析。平均直徑在450奈米的二氧化矽球依序藉由球陷入法及氨基-矽烷表面改質法而被部份官能基化。可控制的球體陷入程度允許球體表面的氨基/矽醇基比例準確的達到1:2、1:1、2:1。
    雙邊不對稱球體及整顆氨基化球體的表面電位量測透露出氨基/矽醇基的比例與它們的等電點呈現一個線性關係。這說明了雙邊不對稱球體的等電點是由球體表面相異電荷的不同分布比例所決定。在自組裝實驗中,先針對氨基-球體在不同pH值下對碳酸基-基板的自組裝行為進行探討。實驗結果顯示二維的碳酸基表面對零維的氨基-球體在水溶液pH值為5時達到了最大吸附量,而這個結果也與表面電位量測中,氨基與碳酸基的表面電位絕對值在pH 5時最接近的這個結果相符。
    在球體自組裝中使用了氨基-球體和氨基-不對稱球體(1:1)當作正電荷的媒介。負電荷的媒介則是表面帶有硫酸基的聚苯乙烯球體(100奈米)。球體自組裝過程由粒徑分布儀所監控。帶有正電荷及負電荷的球體以不同比例混合。當聚苯乙烯球體過量時,氨基-球體傾向被一層聚苯乙烯球體所包圍。而聚苯乙烯球體接在氨基-不對稱球體的量只有接在氨基-球體的一半,這說明了不對稱球體的自組裝行為。隨著聚苯乙烯球體增加,它們會聚集在氨基-球體上並形成一個大型團簇。但在氨基-不對稱球體中,它們與聚苯乙烯組裝後的體積則會傾向達到一個穩定值。這是由於不對稱球體上的兩個半球表面同時產生了不同的自組裝效應。帶有正電荷的半球(大量氨基的表面)能輕易的抓住聚苯乙烯球體,而帶負電荷的半球則會排斥聚苯乙烯球體並防止多顆球體聚集及大型團簇形成。從SEM影像及團簇大小計算上也驗證了這些不對稱球體獨特的自組裝行為。

    In this research work, asymmetric Janus particles with various ratios of their surface functionalities were fabricated and characterized for their self-assembly behaviors. Silica particles with an average diameter of 450 nm were partially-functionalized via the sequentially-arranged particle embedding and amino-silane surface modification processes. Controllable particle submerging degrees allowed the precise manipulations in their surface amino/silanol ratios of 1:2, 1:1, and 2:1.
    Zeta potential measurements of these asymmetric Janus particles and fully-amino-functionalized particles revealed the linear relationship between the IEP values and the amino/silanol ratios. These results indicated that the zero-charged pH values of these Janus particles were resulted from the asymmetrically-distributed opposite charges on particle surfaces. Self-assembly of amino-particles onto the carboxylic-functionalized wafer was first investigated as a function of pH environments. Results concluded the zero-dimensional amino-particles and two-dimensional carboxylic surface reached their maximum assemblies at the pH 5 aqueous solutions, which also agreed with their zeta potential measurements.
    The investigations of particle assemblies were conducted using the amino-particle and amino-Janus particle (1:1 ratio) as the positively-charged carriers. Polystyrene particles (PS, 100 nm in diameters) with SO3H surface functionalities were employed as the negatively-charged spheres. Self-assemblies of these particles were monitored by the measurements of particle size distributions. Positive and negative particles were mixed in various ratios. In the presence of excess PS particles, amino-particles tended to be surrounded by one layer of PS particles. PS particles that attached to amino-Janus particles only reached the half capacity of that to the amino-particles, indicating the asymmetric particle assembly behavior. With increases of PS particles, they became to assemble with amino-particles and resulted in the large clusters. However, in the case of amino-Janus particles, their assembly with PS particles tended to reach a stable volume. It was believed that the two-hemispheric surfaces on Janus particles simultaneously provided the different assembly responses. The positively-charged hemisphere (amino-enriched surface) easily captured the PS particles, while its negatively-charge hemisphere repelled the PS particles and prevented the multiple particle assembles and large cluster formation. SEM measurements and the cluster size calculations were also conducted in order to verify these unique self-assemblies of Janus particles.

    致謝 I 中文摘要 II Abstract IV Table of contents VI List of Tables VIII List of illustrations IX 1. Introduction 1 1.1 Janus particles and asymmetric micro- and nano- materials 1 1.1.1 Types of Janus-like materials 2 1.1.2 Fabrications of Janus particles 6 1.1.3 One-dimensional electrospun polymer fibers as particle embedding substrates 12 1.2 Self-assembly 18 1.2.1 Introduction of self-assembly 18 1.2.2 Nature-inspired self-assembly 19 1.2.3 Principles of self-assembly 20 1.2.4 Models of self-assembly 22 1.2.5 Applications of self-assembly 29 2. Research motivations 33 3. Experimental 35 3.1 Chemicals 35 3.2 Instruments 38 3.3 Experiment process-Amine-modified Janus and ternary particles 39 3.3.1 PMMA/P4VP solution preparation 39 3.3.2 Electrospinning process 39 3.3.3 500nm silica colloidal solution preparation 41 3.3.4 Dipping Process 41 3.3.5 1st heat treatment process 41 3.3.6 APS modification process 42 3.3.7 Gold nanaoparticles preparation and attachment 44 3.3.8 2nd heat treatment process 44 3.3.9 Etching process 44 3.3.10 Polymer fibers dissolving process 45 3.4 Experiment process-Amino-silica particles and carboxylic acidic-silica substrates 46 3.4.1 Silica particles cleaning 46 3.4.2 Silica particles liquid silanization 46 3.4.3 Carboxylic acidic-silica substrate 47 3.4.4 P4VP/PAA multilayer substrate 47 3.4.5 Amine-modified silica particles assembly on carboxylic acidic-substrate 47 3.5 Analysis Instruments 49 3.5.1 Particle Size Distribution 49 3.5.2 Zeta Potential 51 3.5.3 Optical Microscopy (OM) 52 3.5.4 Scanning Electron Microscopy (SEM) 52 4. Result and Discussions 54 4.1 Characterizations of Amino- Janus and Ternary Particles 54 4.2 Adsorption of Particles vs. Substrates 65 4.3 Self-Assembly of Particles vs. Particles 81 5. Conclusion 94 Reference 95

    1. Adeline Perro, S. p. R., Serge Ravaine, Elodie Bourgeat-Lamic and Etienne Duguet, Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry 2005, 15, 3745.
    2. Degennes, P. G., SOFT MATTER (NOBEL LECTURE). Angew. Chem.-Int. Edit. Engl. 1992, 31 (7), 842-845.
    3. Cho, I.; Lee, K. W., MORPHOLOGY OF LATEX-PARTICLES FORMED BY POLY(METHYL METHACRYLATE)-SEEDED EMULSION POLYMERIZATION OF STYRENE. J. Appl. Polym. Sci. 1985, 30 (5), 1903-1926.
    4. Casagrande, C.; Fabre, P.; Raphael, E.; Veyssie, M., JANUS BEADS - REALIZATION AND BEHAVIOR AT WATER OIL INTERFACES. Europhys. Lett. 1989, 9 (3), 251-255.
    5. Liu, Y. F.; Abetz, V.; Muller, A. H. E., Janus cylinders. Macromolecules 2003, 36 (21), 7894-7898.
    6. Walther, A.; Drechsler, M.; Rosenfeldt, S.; Harnau, L.; Ballauff, M.; Abetz, V.; Muller, A. H. E., Self-Assembly of Janus Cylinders into Hierarchical Superstructures. Journal of the American Chemical Society 2009, 131 (13), 4720-4728.
    7. Zerrouki, D.; Baudry, J.; Pine, D.; Chaikin, P.; Bibette, J., Chiral colloidal clusters. Nature 2008, 455 (7211), 380-382.
    8. Koo, H. Y.; Yi, D. K.; Yoo, S. J.; Kim, D. Y., A snowman-like array of colloidal dimers for antireflecting surfaces. Advanced Materials 2004, 16 (3), 274-+.
    9. Ho, C. C.; Chen, W. S.; Shie, T. Y.; Lin, J. N.; Kuo, C., Novel fabrication of Janus particles from the surfaces of electrospun polymer fibers. Langmuir 2008, 24 (11), 5663-5666.
    10. McConnell, M. D.; Kraeutler, M. J.; Yang, S.; Composto, R. J., Patchy and Multiregion Janus Particles with Tunable Optical Properties. Nano Letters 2010, 10 (2), 603-609.
    11. Ye, S. R.; Carroll, R. L., Design and Fabrication of Bimetallic Colloidal "Janus" Particles. ACS Appl. Mater. Interfaces 2010, 2 (3), 616-620.
    12. Smoukov, S. K.; Gangwal, S.; Marquez, M.; Velev, O. D., Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter 2009, 5 (6), 1285-1292.
    13. Berger, S.; Synytska, A.; Ionov, L.; Eichhorn, K. J.; Stamm, M., Stimuli-Responsive Bicomponent Polymer Janus Particles by "Grafting from"/"Grafting to" Approaches. Macromolecules 2008, 41 (24), 9669-9676.
    14. Wang, Y.; Hernandez, R. M.; Bartlett, D. J.; Bingham, J. M.; Kline, T. R.; Sen, A.; Mallouk, T. E., Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 2006, 22 (25), 10451-10456.
    15. Nisisako, T.; Torii, T.; Takahashi, T.; Takizawa, Y., Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials 2006, 18 (9), 1152-+.
    16. Nie, Z.; Li, W.; Seo, M.; Xu, S.; Kumacheva, E., Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis, and Self-Assembly. J. Am. Chem. Soc. 2006, 128 (29), 9408-9412.
    17. Shepherd, R. F.; Conrad, J. C.; Rhodes, S. K.; Link, D. R.; Marquez, M.; Weitz, D. A.; Lewis, J. A., Microfluidic Assembly of Homogeneous and Janus Colloid-Filled Hydrogel Granules. Langmuir 2006, 22 (21), 8618-8622.
    18. Takasi Nisisako, T. T., Takanori Takahashi, Yoichi Takizawa, Synthesis of Monodisperse Bicolored Janus Particles with Electrical Anisotropy Using a Microfluidic Co-Flow System. Advanced Materials 2006, 18 (9), 1152-1156.
    19. T. Nisisako, T. T., Formation of Biphasic Janus Droplets in a Microfabricated Channel for the Synthesis of Shape-Controlled Polymer Microparticles. Advanced Materials 2007, 19 (11), 1489-1493.
    20. Roh, K.-H.; Martin, D. C.; Lahann, J., Biphasic Janus particles with nanoscale anisotropy. Nat Mater 2005, 4 (10), 759-763.
    21. Roh, K. H.; Yoshida, M.; Lahann, J., Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes. Langmuir 2007, 23 (10), 5683-5688.
    22. Cayre, O. J.; Paunov, V. N., Contact Angles of Colloid Silica and Gold Particles at Air-Water and Oil-Water Interfaces Determined with the Gel Trapping Technique. Langmuir 2004, 20 (22), 9594-9599.
    23. V.. Paunov, O. C., Supraparticles and Janus Particles Fabricated by Replication of Particle Monolayers at Liquid Surfaces Using a Gel Trapping Technique. Advanced Materials 2004, 16 (9-10), 788-791.
    24. Li, Z.; Lee, D.; Rubner, M. F.; Cohen, R. E., Layer-by-Layer Assembled Janus Microcapsules. Macromolecules 2005, 38 (19), 7876-7879.
    25. M.. Correa-Duarte, V. S.-M. B. R.-G. L. L.-M. A. K. W. K. M. G., Asymmetric Functional Colloids Through Selective Hemisphere Modification. Advanced Materials 2005, 17 (16), 2014-2018.
    26. Cui, J. Q.; Kretzschmar, I., Surface-Anisotropic Polystyrene Spheres by Electroless Deposition. Langmuir 2006, 22 (20), 8281-8284.
    27. He, Y. L., Kanshea Novel Janus Cu2(OH)2CO3/CuS microspheres prepared via a Pickering emulsion route Journal of Colloid and Interface Science 2007, 306, 296.
    28. Hong, L.; Jiang, S.; Granick, S., Simple Method to Produce Janus Colloidal Particles in Large Quantity. Langmuir 2006, 22 (23), 9495-9499.
    29. Pickering, S. U., J. Chem. Soc. 1907, 91, 2001.
    30. Zhu, M. W. L., Y. M. Meng, T. Zhan, P. Sun, J. Wu, J. Wang, Z. L. Zhu, S. N. Ming, N. B., Controlled Strain on a Double-Templated Textured Polymer Film: a New Approach to Patterned Surfaces with Bravais Lattices and Chains. Langmuir 2006, 22 (17), 7248-7253.
    31. Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S., Janus Particle Synthesis and Assembly. Advanced Materials 2010, 22 (10), 1060-1071.
    32. Anthony, S. M.; Hong, L.; Kim, M.; Granick, S., Single-particle colloid tracking in four dimensions. Langmuir 2006, 22 (24), 9812-9815.
    33. Binsk, B. P.; Fletcher, P. D. I., Particles adsorbed at the oil-water interface: A theoretical comparison between spheres of uniform wettability and "Janus" particles. Langmuir 2001, 17 (16), 4708-4710.
    34. Whitesides, G. M.; Boncheva, M., Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (8), 4769-4774.
    35. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D., Molecular Biology of the Cell. Garland: New York, 1994.
    36. Schwiebert, K. E.; Chin, D. N.; MacDonald, J. C.; Whitesides, G. M., Engineering the solid state with 2-benzimidazolones. Journal of the American Chemical Society 1996, 118 (17), 4018-4029.
    37. Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D., Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293 (5532), 1119-1122.
    38. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B., Microdomain patterns from directional eutectic solidification and epitaxy. Nature 2000, 405 (6785), 433-437.
    39. Whitesides, G. M., SELF-ASSEMBLING MATERIALS. Sci.Am. 1995, 273 (3), 146-149.
    40. Olenyuk, B.; Whiteford, J. A.; Fechtenkotter, A.; Stang, P. J., Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 1999, 398 (6730), 796-799.
    41. Lehn, J.-M., NATO ASI Ser. Ser. E 1996, 320, 14.
    42. Glotzer, S. C., Some assembly required. Science 2004, 306 (5695), 419-420.
    43. Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y., Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 2000, 12 (10), 693-713.
    44. Whitesides, G., WHAT WILL CHEMISTRY DO IN THE NEXT 20 YEARS. Angew. Chem.-Int. Edit. Engl. 1990, 29 (11), 1209-1218.
    45. Whitesides, G. M., The once and future nanomachine - Biology outmatches futurists' most elaborate fantasies for molecular robots. Sci.Am. 2001, 285 (3), 78-83.
    46. Madou, M., fundamentals of Microfabrication. 1997.
    47. Boehringer, K. F., Fearing, R. S. & Goldberg, K. Y., The Handbook of Industrial Robotics. Wiley: New York, 1999; p 1045-1066.
    48. Maury, P.; Escalante, M.; Reinhoudt, D. N.; Huskens, J., Directed assembly of nanoparticles onto polymer-imprinted or chemically patterned templates fabricated by nanoimprint lithography. Adv. Mater. 2005, 17 (22), 2718-+.
    49. Jonas, U.; del Campo, A.; Kruger, C.; Glasser, G.; Boos, D., Colloidal assemblies on patterned silane layers. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (8), 5034-5039.
    50. Chen, K. M.; Jiang, X. P.; Kimerling, L. C.; Hammond, P. T., Selective self-organization of colloids on patterned polyelectrolyte templates. Langmuir 2000, 16 (20), 7825-7834.
    51. Arias, F.; Godinez, L. A.; Wilson, S. R.; Kaifer, A. E.; Echegoyen, L., Interfacial hydrogen bonding. Self-assembly of a monolayer of a fullerene-crown ether derivative on gold surfaces derivatized with an ammonium-terminated alkanethiolate. Journal of the American Chemical Society 1996, 118 (25), 6086-6087.
    52. Hiramatsu, H.; Osterloh, F. E., pH-controlled assembly and disassembly of electrostatically linked CdSe-SiO2 and Au-SiO2 nanoparticle clusters. Langmuir 2003, 19 (17), 7003-7011.
    53. Hong, L.; Cacciuto, A.; Luijten, E.; Granick, S., Clusters of charged Janus spheres. Nano Letters 2006, 6 (11), 2510-2514.
    54. Manoharan, V. N.; Elsesser, M. T.; Pine, D. J., Dense packing and symmetry in small clusters of microspheres. Science 2003, 301 (5632), 483-487.
    55. Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L. W.; Alivisatos, A. P., Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430 (6996), 190-195.
    56. Malikova, N.; Pastoriza-Santos, I.; Schierhorn, M.; Kotov, N. A.; Liz-Marzan, L. M., Layer-by-layer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions. Langmuir 2002, 18 (9), 3694-3697.
    57. Laine, R. M.; Zhang, C. X.; Sellinger, A.; Viculis, L., Polyfunctional cubic silsesquioxanes as building blocks for organic/inorganic hybrids. Appl. Organomet. Chem. 1998, 12 (10-11), 715-723.
    58. Zhang, Z. L.; Glotzer, S. C., Self-assembly of patchy particles. Nano Letters 2004, 4 (8), 1407-1413.
    59. Jenekhe, S. A.; Chen, X. L., Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 1999, 283 (5400), 372-375.
    60. Pregibon, D. C.; Toner, M.; Doyle, P. S., Multifunctional encoded particles for high-throughput biomolecule analysis. Science 2007, 315 (5817), 1393-1396.
    61. Lehmann, O.; Stuke, M., LASER-DRIVEN MOVEMENT OF 3-DIMENSIONAL MICROSTRUCTURES GENERATED BY LASER RAPID PROTOTYPING. Science 1995, 270 (5242), 1644-1646.
    62. Shepherd, R. F.; Panda, P.; Bao, Z.; Sandhage, K. H.; Hatton, T. A.; Lewis, J. A.; Doyle, P. S., Stop-Flow Lithography of Colloidal, Glass, and Silicon Microcomponents. Adv. Mater. 2008, 20 (24), 4734-+.
    63. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., PREPARATION AND CHARACTERIZATION OF AU COLLOID MONOLAYERS. Anal. Chem. 1995, 67 (4), 735-743.
    64. Wilber, A. W.; Doye, J. P. K.; Louis, A. A.; Noya, E. G.; Miller, M. A.; Wong, P., Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. J. Chem. Phys. 2007, 127 (8).

    無法下載圖示 校內:2015-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE