簡易檢索 / 詳目顯示

研究生: 洪浩恩
Hung, Hao-En
論文名稱: Mg-10Li-2Al-1Zn鎂合金擠型材於248K~523K 之拉伸性質及延脆轉換特性探討
A Study on the Tensile Properties and Ductile to Brittle Transition Characteristics of Mg-10Li-2Al-1Zn Extruded Alloy at Temperature Range of 248K~523K
指導教授: 陳立輝
Chen, Li-hui
呂傳盛
Lui, Truan-sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 69
中文關鍵詞: 延脆轉換拉伸試驗Mg-10Li-2Al-1Zn合金
外文關鍵詞: ductile to brittle transition, Mg-10Li-2Al-1Zn alloy, tensile properties
相關次數: 點閱:51下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎂合金具有低密度、高比強度、制振性佳及電磁波遮蔽效應等優點,廣泛運用於交通及電子產業。於鎂合金添加鋰元素所形成的鎂鋰合金,密度較一般鎂合金更低,對交通工業及電子產品的輕量化有正面的助益。本研究針對具有HCP富鎂a相及BCC富鋰b相之雙相Mg-10Li-2Al-1Zn合金擠型材,於248K~523K(−25℃~250℃)溫區間進行拉伸試驗,探討其拉伸性質及延性脆性轉換特性。
    實驗結果顯示,抗拉強度及降伏強度隨拉伸溫度增加而降低。均勻延伸率在50℃以下會隨溫度增加而增加,50℃以上則隨溫度升高而遞減。總延伸率由−25℃及室溫時的5~7%,於50℃大幅增加至35%左右,當溫度上升至100℃,總延伸率繼續增加至55%左右,可知在室溫過渡至50℃的溫區間,存在延脆轉換行為。
    由破斷次表面可觀察到拉伸過程中裂縫起始於a相以及a/b相界,在低溫時裂縫生成後快速傳播並相互連結,最後導致材料的破壞;在高溫時裂縫生成後則受拉應力的作用被撐開形成孔洞,最後孔洞與孔洞互相連結導致材料的破壞。由破斷面的觀察可發現低溫時存在延性及脆性混合式破壞特徵,其中代表脆性破壞行為的劈裂特徵存在於a相中,而b相則屬於延性破壞行為。當溫度上升,脆性破壞所佔面積率減少,於100℃以上已無劈裂特徵,此時材料整體皆屬延性破壞行為。

    Magnesium alloys have many advantages such as low density, high specific strength, good mechanic damping properties and good radiation absorption of electromagnetic waves. They are commonly applied in traffic and electronic industries. Magnesium alloys with adding lithium element could make the density lower than the pure magnesium. This study focuses on tensile properties and ductile to brittle transition characteristics of the two-phase Mg-10Li-2Al-1Zn alloy, which is consist of HCP a-phase and BCC b-phase, at the temperature range of 248K ~ 523K (−25℃~250℃).
    Tensile testing results show that the ultimate tensile stress and the yield stress decreased with increasing temperatures. The uniform elongation has a maximum value at 50℃. The total elongation is significantly increased at the temperature range of RT~50℃, and it further increases to 55% at 100℃. The ductile to brittle transition behavior is occurred at the temperature range of RT~50℃. Fracture sub-surfaces reveal that initial cracks occurred within a-phase and a/b-phase interfaces. At low temperatures, failures are resulted from cracks propagation and inter-connection rapidly. When the temperature raising upon 50℃, cracks grow into pores by tensile stress and inter-connection result in failures. Fracture surfaces coexist ductile and brittle features at lower temperatures, the cleavage failures are observed in a-phase and a lot of ductile fracture features are represented in b-phase. There is no cleavage fracture feature and materials show almost ductile fracture features when the temperature raising upon 100℃.

    摘要 I Abstract II 總目錄 III 表目錄 V 圖目錄 VI 第一章 前言 1 第二章 文獻回顧 2 2.1 鎂合金之分類 2 2.2 鎂鋰合金 2 2.2.1 鎂鋰合金基本結構及性質 2 2.2.2 鎂鋰合金研究現況 3 2.3 延脆轉換溫度 5 2.4 BCC及HCP結構的變形機制 5 2.4.1 滑移系統 5 2.4.2 雙晶變形 6 2.5 研究目的 6 第三章 實驗方法 12 3.1 實驗材料 12 3.2 顯微組織、相組成及微硬度測試 12 3.2.1 顯微組織觀察 12 3.2.2 XRD相組成分析 13 3.2.3 微硬度測試 13 3.3 拉伸試驗 13 第四章 實驗結果 18 4.1 LAZ1021-F微觀結構與相組成 18 4.2 微硬度測試結果 19 4.3 拉伸性質之溫度依存性 19 4.4 拉伸破壞行為觀察 20 4.4.1 拉伸破斷試片巨觀形貌 20 4.4.2 拉伸破斷次表面OM金相觀察 20 4.4.3 拉伸破斷面SEM觀察 21 第五章 討論 46 5.1 延脆轉換行為 46 5.2 a相變形機制探討 46 5.2.1 a相劈裂面積率 46 5.2.2 a相織構與滑移系統之關係 47 5.2.3 a相織構與雙晶變形行為之關係 48 5.3 50℃時於不同應變量下拉伸試片次表面金相觀察 49 5.4 LAZ1021-F延性上升之因素探討 49 5.5 破壞產生及成長機制 50 第六章 結論 64 參考文獻 65 誌謝 68 自述 69 表2-1 鎂合金命名英文代號部分 8 表2-2 鎂合金熱處理及製作狀態代號 9 表3-1 LAZ1021-F合金組成 15 表4-1 LAZ1021-F之a相面積率分析 23 表4-2 LAZ1021-F微硬度(Hv)測試結果 23 圖2-1 鋰含量對鎂鋰合金密度之影響 10 圖2-2 Mg-Li二元相圖 11 圖2-3 Mg-Li-Al於100℃之三元相圖 11 圖3-1 LAZ1021-F尺寸及方位 16 圖3-2 拉伸試片之形狀、方位及尺寸 16 圖3-3 低溫拉伸裝置示意圖 17 圖4-1 LAZ1021-F之3-D立體OM金相 24 圖4-2 LAZ1021-F腐蝕前OM金相: (a) ND面, (b) TD面, (c) ED面 25 圖4-3 LAZ1021-F經腐蝕後OM金相: (a) ND面, (b) TD面, (c) ED面 26 圖4-4 LAZ1021-F之XRD相組成分析 27 圖4-5 黑色顆粒(圖4-2、圖4-3)之SEM/EDS分析 28 圖4-6 粉末繞射圖: (a) 鎂粉, (b) 鋰粉 29 圖4-7 於各溫度下之強度、延伸率比較圖: (a) UTS, (b) YS 30 (c) UE, (d) TE 31 圖4-8 -25℃至250℃之應力應變曲線 32 圖4-9 應力應變曲線局部放大圖: (a) 50℃~100℃, (b) 150℃~250℃ 33 圖4-10 拉伸破斷試片巨觀照: (a) 未拉伸, (b) -25℃, (c) 室 溫, (d) 50℃, (e) 100℃, (f) 150℃, (g) 200℃, (h) 250℃ 34 圖4-11 -25℃拉伸破斷次表面OM金相 35 圖4-12 室溫拉伸破斷次表面OM金相 36 圖4-13 50℃拉伸破斷次表面OM金相 37 圖4-14 100℃拉伸破斷次表面OM金相 38 圖4-15 150℃拉伸破斷次表面OM金相 39 圖4-16 200℃拉伸破斷次表面OM金相: 40 圖4-17 250℃拉伸破斷次表面OM金相: 41 圖4-18 -25℃拉伸破斷面SEM照片:(a)延性脆性混合特徵, (b) 照片(a)虛線內脆性破壞特徵 42 圖4-19 室溫拉伸破斷面SEM照片: (a)延性脆性混合特徵, (b) 照片(a)虛線內脆性破壞特徵 43 圖4-20 50℃拉伸破斷面SEM照片: (a)延性脆性混合特徵, (b) 照片(a)虛線內脆性破壞特徵 44 圖4-21 拉伸破斷面SEM照片: (a) 100℃, (b) 150℃, (c) 200℃, (d) 250℃ 45 圖5-1 劈裂面積率對溫度關係圖 52 圖5-2 LAZ1021-F織構示意圖 53 圖5-3 鎂合金變形機制之CRSS與溫度關係 54 圖5-4 50℃應變量e=6%時拉伸試片次表面OM金相 55 圖5-5 50℃應變量e=25%時拉伸試片次表面OM金相 56 圖5-6 Mg-5 wt.%Li合金柱面滑移系統之CRSS與溫度關係 57 圖5-7 距破斷處2 mm遠處次表面OM金相:(a) 50℃, (b)100℃, (c) 150℃, (d) 200℃, (e) 250℃ 58 圖5-8 拉伸破斷試片夾持部次表面OM金相:(a) 50℃, (b) 100℃, (c) 150℃, (d) 200℃, (e)250℃ 59 圖5-9 破斷處次表面OM金相:(a) −25℃, (b) 室溫(c) 50℃, (d) 100℃, (e) 150℃, (f) 200℃, (g) 250℃ 60 圖5-10 距破斷處3 mm遠處次表面OM金相:(a) −25℃, (b)室溫, (c) 50℃, (d) 100℃, (e) 150℃, (f) 200℃, (g) 250℃ 61 圖5-11 破壞機制示意圖: (a) −25℃及室溫, 62 (b) 50℃~250℃ 63

    [1] H. Haferkamp, M. Niemeyer, R. Boehm, U. Holzkamp, C. Jashik, V. Kaese, “Development, Processing and Applications Range of Magnesium Lithium Alloys’’, Materials Science Forum, vol.350-351, 2000, pp.31-42.
    [2] G. Sambasiva, Y. Prasad, “Effect of Texture and Grain Size on the Fracture Behaviour of Hot Rolled Mg, Mg-12.5%Li and Mg-5%Tl Alloys’’, Res Mechanica, vol.9, 1983 , pp.41-61.
    [3] M. Meshii, “Mechanical Properties of BCC Metals”, The Metallurgical Society of AIME, 1981, pp.13-15.
    [4] M. Avedesian, H. Baker, “ASM Specialty Handbook-Magnesium and Magnesium Alloys”, ASM International, United States of America, 1999, pp.13-43.
    [5] E. Aghion, D. Eliezer, “Magnesium Alloys Science Technology and Applications”, Israeli Consortium for the Development of Magnesium Technologies, Israel, 2004, pp.17.
    [6] R. Ninomiya, K. Miyake, “A Study of Superlight and Superplastic Mg-Li Based Alloys’’, Journal of Japan Institute of Light Metals, vol.51, 2001, pp.509-513.
    [7] T. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, “Binary Alloy Phase Diagrams”, ASM International, United States of America, 2001, pp.2445.
    [8] F. Hauser, P. Landon, J. Dorn, “Deformation and Fracture of Alpha Solid Solutions of Lithium in Magnesium’’, Transactions of American Society for Metals, vol.50, 1958, pp.856-883.
    [9] Z. Trojanova, Z. Drozd, P. Lukac, S. Kudela, “Deformation Processes in Mg-Li-Al Base Composites’’, Materials Science Forum, vol.419-422, 2003, pp.817-822.
    [10] G. Song, M. Kral, “Characterization of Cast Mg-Li-Ca Alloys’’, Materials Characterization, vol.54, 2005, pp.279-286.
    [11] H. Wu, Z. Gao, J. Lin, C. Chiu, “Effects of Minor Scandium Addition on the Properties of Mg-Li-Al-Zn Alloy’’, Journal of Alloys and Compounds, vol.474, 2009, pp.158-163.
    [12] W. Jones, G. Hogg, “The Stability of Mechanical Properties of Beta-Phase Magnesium-Lithium Alloys”, Journal of The Institute of Metals, vol.85, 1956, pp.255-261.
    [13] G. Raynor, M. Kench, “The Theta Phase in Magnesium-Lithium-Silver Alloys, with Reference to Instability after Ageing’’, Journal of The Institute of Metals, vol.88, 1959, pp.209-216.
    [14] D. H. Kim, Y. S. Han, H. I. Lee, B. Cantor, “Structure and Decomposition Behaviour of Mg-Li-Al Alloys’’, Scripta Metallurgica et Materialia, vol.31, 1994, pp.819-824.
    [15] A. Alamo, D. Banchik, “Precipitation Phenomena in the Mg-31at% Li-1 at% Al Alloy’’, Journal of Materials Science, vol.15, 1980, pp.222-229.
    [16] J. Clark, L. Sturkey, “The Age-Hardening Mechanism in Magnesium-Lithium-Zinc Alloys”, Journal of the Institute of Metals, vol.86, 1957-1958, pp.272-276.
    [17] D. Levinson, D. McPheson, “Phase Relations in Magnesium – Lithium - Aluminum Alloys’’, Transactions of the American Society of Metals, vol.48, 1956, pp.689-705.
    [18] T. C. Chang, J. Y. Wang, C. L. Chu, S. Lee, “Mechanical Properties and Microstructures of Various Mg-Li Alloys’’, Materials Letters, vol.60, 2006, pp.3272-3276.
    [19] J. Y. Wang, W. P. Hong, P. C. Hsu, L. Tan, “Microstructures and Mechanical Behavior of Processed Mg-Li-Zn Alloy’’, Materials Science Forum, vol.419-422, 2003, pp.165-170.
    [20] 吳泓渝、邱垂泓,「工業材料雜誌253期」,2008年1月,170-176頁。
    [21] H. Takuda, H, Matsusaka, “Tensile Properties of a Few Mg-Li-Zn Alloy Thin Sheets’’, Journal of Materials Science, vol.37, 2002, pp.51-57.
    [22] M. Furui, C. Xu, T. Aida, M. Inoue, H. Anada, T. Langdon, “Improving the Superplastic Properties of a Two-Phase Mg-8%Li Alloy through Processing by ECAP’’, Materials Science & Engineering A, vol.410-411, 2005, pp.439-442.
    [23] Z. Drozd, Z. Trojanova, “Deformation Behaviour of Mg-Li-Al Alloys’’, Journal of Alloys and Compounds, vol.378, 2004, pp.192-195.
    [24] 林尚秋,「退火溫度對Mg-9wt.%Li-3wt.%Al-1wt.%Zn合金軋延板材微觀組織與機械性質影響之研究」,國立中興大學材料科學與工程學研究所碩士論文,中華民國九十七年七月。
    [25] K. Heindlhofer, Transactions of the Metallurgical Society of AIME, vol.116, 1935, pp.232.
    [26] G. Hughes, P. Flewitt, “Temperature Dependence of Mechanical Properties of Zinc and Zircaloy Measured Using Miniaturised Disc Tests”, Materials Science and Technology, vol.24, 2008, pp.567-574.
    [27] R. Honeycombe, “The Plastic Deformation of Metals”, Edward Arnold, Great Britain, 1984, pp.113-447
    [28] R. Reed-Hill, R. Abbaschian, “Physical Metallurgy Principles 3rd Edition”, PWS Publishing Company, United States of America, pp.145-146.
    [29] R. Quimby, J. Mote, J. Dorn, “Yield Point Phenomena in Magnesium – Lithium Single Crystal’’, Transactions of American Society for Metals, vol.55, 1962, pp.149-157.
    [30] A. Ahmadieh, J. Mitchell, J. Dorn, “Lithium Alloying and Dislocation Mechanisms for Prismatic Slip in Magnesium’’, Transactions of the Metallurgical Society of AIME, vol.233, 1965, pp.1130-1138.
    [31] C. Brooks, “Heat Treatment, Structures and Properties of Nonferrous Alloys”, ASM, United States of America, 1984, pp.59-69.
    [32] 林逸華、宋振銘、王建義,「Mg-Li-Al-Zn合金振動破壞性質探討」,社團法人台灣鎂合金協會九十七年度會員大會暨論文發表會論文集,中華民國97年1月4日,30-36頁。
    [33] 王伯政、林泓霆、林新智、林昆明、葉明堂,「添加鋯對鎂鋰合金性質影響之研究」,社團法人台灣鎂合金協會九十七年度會員大會暨論文發表會論文集,中華民國97年1月4日,43-47頁。
    [34] D. White Jr., J. Burke, “The Metal Beryllium”, ASM, United States of America, 1955, pp.372-424.
    [35] T. Nakano, M. Azuma, Y. Umakoshi, “Tensile Deformation and Fracture Behaviour in NbSi2 and MoSi2 Single Crystals’’, Acta Materialia, vol.50, 2002, pp.3731-3742.
    [36] Y. Harada, M. Ohmori, “Ductile-Brittle Transition Behavior of Rolled Chromium’’, Journal of Materials Processing Technology, vol.153-154, 2004, pp.93-99.
    [37] T. Countney, “Mechanical Behavior of Materials 2nd Edition’’, McGraw Hill, Singapore, 2004, pp.141.
    [38] A. Becerra, M. Pekguleryuz, “Effect of Lithium, Indium, and Zinc on the Lattice Parameters of Magnesium”, Materials Research Society, vol.23, 2008, pp.3379-3386.
    [39] S. Kamado, “日本鎂合金工業現況及研究趨勢研討會講義”,台灣鎂合金協會,2001,60頁。

    下載圖示 校內:立即公開
    校外:2009-07-29公開
    QR CODE