| 研究生: |
洪浩恩 Hung, Hao-En |
|---|---|
| 論文名稱: |
Mg-10Li-2Al-1Zn鎂合金擠型材於248K~523K
之拉伸性質及延脆轉換特性探討 A Study on the Tensile Properties and Ductile to Brittle Transition Characteristics of Mg-10Li-2Al-1Zn Extruded Alloy at Temperature Range of 248K~523K |
| 指導教授: |
陳立輝
Chen, Li-hui 呂傳盛 Lui, Truan-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 延脆轉換 、拉伸試驗 、Mg-10Li-2Al-1Zn合金 |
| 外文關鍵詞: | ductile to brittle transition, Mg-10Li-2Al-1Zn alloy, tensile properties |
| 相關次數: | 點閱:51 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鎂合金具有低密度、高比強度、制振性佳及電磁波遮蔽效應等優點,廣泛運用於交通及電子產業。於鎂合金添加鋰元素所形成的鎂鋰合金,密度較一般鎂合金更低,對交通工業及電子產品的輕量化有正面的助益。本研究針對具有HCP富鎂a相及BCC富鋰b相之雙相Mg-10Li-2Al-1Zn合金擠型材,於248K~523K(−25℃~250℃)溫區間進行拉伸試驗,探討其拉伸性質及延性脆性轉換特性。
實驗結果顯示,抗拉強度及降伏強度隨拉伸溫度增加而降低。均勻延伸率在50℃以下會隨溫度增加而增加,50℃以上則隨溫度升高而遞減。總延伸率由−25℃及室溫時的5~7%,於50℃大幅增加至35%左右,當溫度上升至100℃,總延伸率繼續增加至55%左右,可知在室溫過渡至50℃的溫區間,存在延脆轉換行為。
由破斷次表面可觀察到拉伸過程中裂縫起始於a相以及a/b相界,在低溫時裂縫生成後快速傳播並相互連結,最後導致材料的破壞;在高溫時裂縫生成後則受拉應力的作用被撐開形成孔洞,最後孔洞與孔洞互相連結導致材料的破壞。由破斷面的觀察可發現低溫時存在延性及脆性混合式破壞特徵,其中代表脆性破壞行為的劈裂特徵存在於a相中,而b相則屬於延性破壞行為。當溫度上升,脆性破壞所佔面積率減少,於100℃以上已無劈裂特徵,此時材料整體皆屬延性破壞行為。
Magnesium alloys have many advantages such as low density, high specific strength, good mechanic damping properties and good radiation absorption of electromagnetic waves. They are commonly applied in traffic and electronic industries. Magnesium alloys with adding lithium element could make the density lower than the pure magnesium. This study focuses on tensile properties and ductile to brittle transition characteristics of the two-phase Mg-10Li-2Al-1Zn alloy, which is consist of HCP a-phase and BCC b-phase, at the temperature range of 248K ~ 523K (−25℃~250℃).
Tensile testing results show that the ultimate tensile stress and the yield stress decreased with increasing temperatures. The uniform elongation has a maximum value at 50℃. The total elongation is significantly increased at the temperature range of RT~50℃, and it further increases to 55% at 100℃. The ductile to brittle transition behavior is occurred at the temperature range of RT~50℃. Fracture sub-surfaces reveal that initial cracks occurred within a-phase and a/b-phase interfaces. At low temperatures, failures are resulted from cracks propagation and inter-connection rapidly. When the temperature raising upon 50℃, cracks grow into pores by tensile stress and inter-connection result in failures. Fracture surfaces coexist ductile and brittle features at lower temperatures, the cleavage failures are observed in a-phase and a lot of ductile fracture features are represented in b-phase. There is no cleavage fracture feature and materials show almost ductile fracture features when the temperature raising upon 100℃.
[1] H. Haferkamp, M. Niemeyer, R. Boehm, U. Holzkamp, C. Jashik, V. Kaese, “Development, Processing and Applications Range of Magnesium Lithium Alloys’’, Materials Science Forum, vol.350-351, 2000, pp.31-42.
[2] G. Sambasiva, Y. Prasad, “Effect of Texture and Grain Size on the Fracture Behaviour of Hot Rolled Mg, Mg-12.5%Li and Mg-5%Tl Alloys’’, Res Mechanica, vol.9, 1983 , pp.41-61.
[3] M. Meshii, “Mechanical Properties of BCC Metals”, The Metallurgical Society of AIME, 1981, pp.13-15.
[4] M. Avedesian, H. Baker, “ASM Specialty Handbook-Magnesium and Magnesium Alloys”, ASM International, United States of America, 1999, pp.13-43.
[5] E. Aghion, D. Eliezer, “Magnesium Alloys Science Technology and Applications”, Israeli Consortium for the Development of Magnesium Technologies, Israel, 2004, pp.17.
[6] R. Ninomiya, K. Miyake, “A Study of Superlight and Superplastic Mg-Li Based Alloys’’, Journal of Japan Institute of Light Metals, vol.51, 2001, pp.509-513.
[7] T. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, “Binary Alloy Phase Diagrams”, ASM International, United States of America, 2001, pp.2445.
[8] F. Hauser, P. Landon, J. Dorn, “Deformation and Fracture of Alpha Solid Solutions of Lithium in Magnesium’’, Transactions of American Society for Metals, vol.50, 1958, pp.856-883.
[9] Z. Trojanova, Z. Drozd, P. Lukac, S. Kudela, “Deformation Processes in Mg-Li-Al Base Composites’’, Materials Science Forum, vol.419-422, 2003, pp.817-822.
[10] G. Song, M. Kral, “Characterization of Cast Mg-Li-Ca Alloys’’, Materials Characterization, vol.54, 2005, pp.279-286.
[11] H. Wu, Z. Gao, J. Lin, C. Chiu, “Effects of Minor Scandium Addition on the Properties of Mg-Li-Al-Zn Alloy’’, Journal of Alloys and Compounds, vol.474, 2009, pp.158-163.
[12] W. Jones, G. Hogg, “The Stability of Mechanical Properties of Beta-Phase Magnesium-Lithium Alloys”, Journal of The Institute of Metals, vol.85, 1956, pp.255-261.
[13] G. Raynor, M. Kench, “The Theta Phase in Magnesium-Lithium-Silver Alloys, with Reference to Instability after Ageing’’, Journal of The Institute of Metals, vol.88, 1959, pp.209-216.
[14] D. H. Kim, Y. S. Han, H. I. Lee, B. Cantor, “Structure and Decomposition Behaviour of Mg-Li-Al Alloys’’, Scripta Metallurgica et Materialia, vol.31, 1994, pp.819-824.
[15] A. Alamo, D. Banchik, “Precipitation Phenomena in the Mg-31at% Li-1 at% Al Alloy’’, Journal of Materials Science, vol.15, 1980, pp.222-229.
[16] J. Clark, L. Sturkey, “The Age-Hardening Mechanism in Magnesium-Lithium-Zinc Alloys”, Journal of the Institute of Metals, vol.86, 1957-1958, pp.272-276.
[17] D. Levinson, D. McPheson, “Phase Relations in Magnesium – Lithium - Aluminum Alloys’’, Transactions of the American Society of Metals, vol.48, 1956, pp.689-705.
[18] T. C. Chang, J. Y. Wang, C. L. Chu, S. Lee, “Mechanical Properties and Microstructures of Various Mg-Li Alloys’’, Materials Letters, vol.60, 2006, pp.3272-3276.
[19] J. Y. Wang, W. P. Hong, P. C. Hsu, L. Tan, “Microstructures and Mechanical Behavior of Processed Mg-Li-Zn Alloy’’, Materials Science Forum, vol.419-422, 2003, pp.165-170.
[20] 吳泓渝、邱垂泓,「工業材料雜誌253期」,2008年1月,170-176頁。
[21] H. Takuda, H, Matsusaka, “Tensile Properties of a Few Mg-Li-Zn Alloy Thin Sheets’’, Journal of Materials Science, vol.37, 2002, pp.51-57.
[22] M. Furui, C. Xu, T. Aida, M. Inoue, H. Anada, T. Langdon, “Improving the Superplastic Properties of a Two-Phase Mg-8%Li Alloy through Processing by ECAP’’, Materials Science & Engineering A, vol.410-411, 2005, pp.439-442.
[23] Z. Drozd, Z. Trojanova, “Deformation Behaviour of Mg-Li-Al Alloys’’, Journal of Alloys and Compounds, vol.378, 2004, pp.192-195.
[24] 林尚秋,「退火溫度對Mg-9wt.%Li-3wt.%Al-1wt.%Zn合金軋延板材微觀組織與機械性質影響之研究」,國立中興大學材料科學與工程學研究所碩士論文,中華民國九十七年七月。
[25] K. Heindlhofer, Transactions of the Metallurgical Society of AIME, vol.116, 1935, pp.232.
[26] G. Hughes, P. Flewitt, “Temperature Dependence of Mechanical Properties of Zinc and Zircaloy Measured Using Miniaturised Disc Tests”, Materials Science and Technology, vol.24, 2008, pp.567-574.
[27] R. Honeycombe, “The Plastic Deformation of Metals”, Edward Arnold, Great Britain, 1984, pp.113-447
[28] R. Reed-Hill, R. Abbaschian, “Physical Metallurgy Principles 3rd Edition”, PWS Publishing Company, United States of America, pp.145-146.
[29] R. Quimby, J. Mote, J. Dorn, “Yield Point Phenomena in Magnesium – Lithium Single Crystal’’, Transactions of American Society for Metals, vol.55, 1962, pp.149-157.
[30] A. Ahmadieh, J. Mitchell, J. Dorn, “Lithium Alloying and Dislocation Mechanisms for Prismatic Slip in Magnesium’’, Transactions of the Metallurgical Society of AIME, vol.233, 1965, pp.1130-1138.
[31] C. Brooks, “Heat Treatment, Structures and Properties of Nonferrous Alloys”, ASM, United States of America, 1984, pp.59-69.
[32] 林逸華、宋振銘、王建義,「Mg-Li-Al-Zn合金振動破壞性質探討」,社團法人台灣鎂合金協會九十七年度會員大會暨論文發表會論文集,中華民國97年1月4日,30-36頁。
[33] 王伯政、林泓霆、林新智、林昆明、葉明堂,「添加鋯對鎂鋰合金性質影響之研究」,社團法人台灣鎂合金協會九十七年度會員大會暨論文發表會論文集,中華民國97年1月4日,43-47頁。
[34] D. White Jr., J. Burke, “The Metal Beryllium”, ASM, United States of America, 1955, pp.372-424.
[35] T. Nakano, M. Azuma, Y. Umakoshi, “Tensile Deformation and Fracture Behaviour in NbSi2 and MoSi2 Single Crystals’’, Acta Materialia, vol.50, 2002, pp.3731-3742.
[36] Y. Harada, M. Ohmori, “Ductile-Brittle Transition Behavior of Rolled Chromium’’, Journal of Materials Processing Technology, vol.153-154, 2004, pp.93-99.
[37] T. Countney, “Mechanical Behavior of Materials 2nd Edition’’, McGraw Hill, Singapore, 2004, pp.141.
[38] A. Becerra, M. Pekguleryuz, “Effect of Lithium, Indium, and Zinc on the Lattice Parameters of Magnesium”, Materials Research Society, vol.23, 2008, pp.3379-3386.
[39] S. Kamado, “日本鎂合金工業現況及研究趨勢研討會講義”,台灣鎂合金協會,2001,60頁。