| 研究生: |
游中瑋 Yu, Chung-Wei |
|---|---|
| 論文名稱: |
考慮電雙層效應在定負荷下關節軟骨的純擠壓作用 Consideration of EDL Effects on the Pure Squeeze Action in an Articular Cartilage with Constant Load |
| 指導教授: |
李旺龍
Li, Wang-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 彈液動潤滑 、關節軟骨 、電雙層效應 、純擠壓分析 |
| 外文關鍵詞: | EHL, articular cartilage, electric double layer, pure squeeze action |
| 相關次數: | 點閱:199 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著近代醫學越來越發達,與人體健康之相關之研究變得越來越多,其中一樣人體每天都需要的事情就是運動。而與運動最息息相關的人體構造即為關節軟骨(articular cartilage),他在人體的動關節中扮演緩衝力量並保護硬骨之間的接觸。關節軟骨具有極為特別的層狀結構以及孔隙構造,孔隙中富含關節潤滑液(synovial fluid),使其具備極為良好的磨潤性質,能夠承受人體長時間下各種不同的擠壓、摩擦等等不同運動形式。尤其近幾年來關節置換物成為了新的一項熱門的研究,而為了讓人工關節能夠達到與人體自然關節相同的性能勢必會對這方面進行更深的研究。
在本研究中我們探討一剛球進行定負載純擠壓下方之關節軟骨,而關節軟骨中包含了上層之孔隙層以及下層之彈性層,利用有限元素分析法模擬分析擠壓時對潤滑液造成之壓力、膜厚、變形等等性質以及電雙層效應進行探討。從結果中可以得到關節軟骨之滲透率、孔隙厚度、Inverse Debye length及電黏度等等對關節軟骨在擠壓時所造成的影響,綜合討論各項參數之結果並進一步進行統整後能夠歸納出接近於真實軟骨在運動時之情形,並且在之後不管是了解關節軟骨的潤滑性以及未來在進行人工關節的製備上都會有更多的參考依據。
With the medical field developed, human life become longer, whether articular cartilage is healthy or not become an important issue for longer using. Articular cartilage have a special layer structure and pore with synovial fluid inside, make it have a great grinding performance, which can support variety of loading or motion in different movement for a long time. In this research we equivalent the motion of articular cartilage into a rigid ball with constant load pure squeeze action. Using modified Reynold equation considering electric double layer effect and film equation, force balance equation, Using finite element analysis to simulate and couple these governing equations. The influence of permeability, pore thickness and electric double layer effect can be mainly discussed in the results. The apparent viscosity will increase when permeability decrease, pore thickness increase or electric double layer effect increase, with this model we can figure out the effect between these variable with pressure, film thickness and apparent viscosity.
[1] M. Qiu, A. Chyr, A. P. Sanders, and B. Raeymaekers, "Designing prosthetic knee joints with bio-inspired bearing surfaces," Tribol Int, vol. 77, pp. 106-110, 2014.
[2] J. Sotres, T. Arnebrant, "Experimental Investigations of Biological Lubrication at the Nanoscale:The cases of Synovial Joints and the Oral Cavity," Lubricants, vol.4, pp. 102-131, 2013
[3] A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, "The basic science of articular cartilage: structure, composition, and function," Sports Health, vol. 1, pp. 461-468, 2009.
[4] L. C. Hughes, C. W. Archer, and I. ap Gwynn, "The ultrastructure of mouse articular cartilage: Collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review," European Cells and Materials, vol. 9, pp. 68-84, 2005.
[5] I. Gwynn, S. Wade, K. Ito and R.G. Richards, "Novel aspects to the structure of rabbit articular cartilage," European Cells and Materials, vol. 4, pp. 18-29, 2002.
[6] P. Bursac, C. V. McGrath, S. R. Eisenberg, and D. Stamenovic, "A microstructural model of elastostatic properties of articular cartilage in confined compression," Journal of Biomechanical Engineering, vol. 122, pp. 347-353, 2000.
[7] J. C. CayGill, G. H. West, "The rheological behaviour of synovial fluid and its possible relation to joint lubrication," Medical and Biology Engineering, vol. 7, pp. 507-516, 1969.
[8] V. Tirtaatmadja, D. V. Boger, and J. R. E. Fraser, "The dynamic and steady shear properties of synovial fluid and of the components making up synovial fluid," Rheologica Acta, vol. 23, pp. 311-321, 1984.
[9] K. Meyer, E. M. Smyth, and M. H. Dawson, "The isolation of a mucopolysaccharide from synovial fluid," Jouranal of Biological Chemistry, vol. 128, pp. 319-327, 1939.
[10] A. O. Bingol, D. Lohmann, K. Puschel, and W. M. Kulicke, "Characterization and comparison of shear and extensional flow of sodium hyaluronate and human synovial fluid," Biorheology, vol. 47, pp. 205-224, 2010..
[11] Z. Zhang and G. F. Christopher, "The nonlinear viscoelasticity of hyaluronic acid and its role in joint lubrication," Soft Matter, vol. 11, pp. 2596-2603, 2015.
[12] A. F. Cooke, D. Dowson, and V. Wright, "The rheology of synovial fluid and some potential synthetic lubricants for degenerate synovial joints," Engineering in Medicine, vol. 7, pp. 66-72, 1978.
[13] P. R. Lewis, and C. W. McCutchen, "Experimental evidence for weeping lubrication in mammalian joints," Nature, vol. 184, pp. 1285, 1959.
[14] G. W. Greene, D. W. Lee, J. Yu, S. Das, X. Banquy, and J. N. Israelachvili, "Lubrication and Wear Protection of Natural (Bio)Systems," Polymer Adhesion, Friction, and Lubrication, pp. 83-133, 2013.
[15] G. A. Ateshian, "The role of interstitial fluid pressurization in articular cartilage lubrication," Journal of Biomechanics, vol. 42, pp. 1163-1176, 2009.
[16] M. C. Mow, and F. F. Ling, "On weeping lubrication theory," Zeitschrift fur Angewandte Mathematik und Physik, vol. 20, pp. 156-166, 1969.
[17] C. W. McCutchen, "The Frictional Properties of Animal Joints," Wear, vol. 5, pp. 1-17, 1962.
[18] D. Dowson, "Modes of Lubrication in human joints," Proceedings of the Institution of Mechanical Engineers, vol. 181, pp. 45-54, 1966.
[19] V. C. Mow and X. E. Guo, "Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies," Annu Rev Biomed Eng, vol. 4, pp. 175-209, 2002.
[20] M. A. Kessler, C. Glaser, S. Tittel, M. Reiser, and A. B. Imhoff, "Volume changes in the menisci and articular cartilage of runners: an in vivo investigation based on 3-D magnetic resonance imaging," Am J Sports Med, vol. 34, pp. 832-836, 2006.
[21] F. Eckstein, B. Lemberger, C. Gratzke, M. Hudelmaier, C. Glaser, K. H. Englmeier, and M. Reiser, "In vivo cartilage deformation after different types of activity and its dependence on physical training status," Annals of the Rheumatic Diseases, vol. 64, pp. 291-295, 2005.
[22] M. Hlaváček, "Squeeze-Film Lubrication of the Human Ankle Joint Subjected to the Cyclic Loading Encountered in Walking," Journal of Tribology, vol. 127, pp. 141-147, 2005.
[23] M. Hlaváček, "Lubrication of the Human Ankle Joint in Walking," Journal of Tribology, vol. 132, pp. 011201 1-8, 2010.
[24] T. L. Racunica, A. J. Teichtahl, Y. Wang, A. E. Wluka, D. R. English, G. G. Giles, R. O'Sullivan, and F. M. Cicuttini, "Effect of physical activity on articular knee joint structures in community-based adults," Arthritis and Rheumatism, vol. 57, pp. 1261-1268, 2007.
[25] D. Dowson, "Bio-tribology," Faraday Discussions, vol. 156, pp. 9-30, 2012.
[26] H. Mohammadi, K. Mequanint, and W. Herzog, "Computational aspects in mechanical modeling of the articular cartilage tissue," Proc Inst Mech Eng H, vol. 227, pp. 402-420, 2013.
[27] G. W. Greene, D. W. Lee, J. Yu, S. Das, X. Banquy, and J. N. Israelachvili, "Lubrication and Wear Protection of Natural (Bio)Systems," Polymer Adhesion, Friction, and Lubrication, pp. 83-133, 2013.
[28] L. Gao, D. Dowson, and R. W. Hewson, "A numerical study of non-Newtonian transient elastohydrodynamic lubrication of metal-on-metal hip prostheses," Tribology International, vol. 93, pp. 486-494, 2016.
[29] A. F. Quiñonez, J. Fisher, and Z. M. Jin, "A steady-state elastohydrodynamic lubrication model aimed at natural hip joints with physiological loading and anatomical position," Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 222, pp. 503-512, 2008.
[30] G. W. Greene, X. Banquy, D. W. Lee, D. D. Lowrey, J. Yu, and J. N. Israelachvili, "Adaptive mechanically controlled lubrication mechanism found in articular joints," Biophysics and Computational Biology, vol. 108, pp. 5255-5259, 2011.
[31] N. Sakai, Y. Hagihara, T. Furusawa, N. Hosoda, Y. Sawae, and T. Murakami, "Analysis of biphasic lubrication of articular cartilage loaded by cylindrical indenter," Tribology International, vol. 46, pp. 225-236, 2012.
[32] T. Murakami, S. Yarimitsu, K. Nakashima, N. Sakai, T. Yamaguchi, Y. Sawae, A. Suzuki, "Biphasic and boundary lubrication mechanisms in artificial hydrogel cartilage: A review," Proc Inst Mech Eng H, vol. 229, pp. 864-878, 2015.
[33] M. Qiu, A. Chyr, A. P. Sanders, and B. Raeymaekers, "Designing prosthetic knee joints with bio-inspired bearing surfaces," Tribol Int, vol. 77, pp. 106-110, 2014.
[34] T. Murakami, N. Sakai, T. Yamaguchi, S. Yarimitsu, K. Nakashima, Y. Sawae, A. Suzuki, "Evaluation of a superior lubrication mechanism with biphasic hydrogels for artificial cartilage," Tribology International, vol. 89, pp. 19-26, 2015.
[35] D. Baykal, R. J. Underwood, K. Mansmann, M. Marcolongo, and S. M. Kurtz, "Evaluation of friction properties of hydrogels based on a biphasic cartilage model," Journal of the Mechanical Behavior of Biomedical Materials, vol. 28, pp. 263-273, 2013.
[36] M. Hlaváček, "Squeeze-Film Lubrication of the Human Ankle Joint Subjected to the Cyclic Loading Encountered in Walking," Journal of Tribology, vol. 127, pp. 141-147, 2005.
[37] A. E. Yousif, "The Role of Lubrication Mechanisms in the Knee Synovial Joint," Nahrain University College of Engineering Journal, vol. 11, pp. 522-535, 2008.
[38] Hertz, H. R., 1882, Ueber die Beruehrung elastischer Koerper (On Contact Between Elastic Bodies), in Gesammelte Werke (Collected Works), Vol. 1, Leipzig, Germany, 1895.
[39] W. L. Li, "Derivation of Modified Reynolds Equation: A Porous Media Model With Effects of Electrokinetics," Journal of Tribology, vol. 131, pp. 031701 1-10, 2009.
[40] H. Helmholtz, "Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche" Annalen der Physik und Chemie, vol. 165, pp. 211-233, 1853
[41] K. Davda, F. V. Lali, B. Sampson, J. A. Skinner, and A. J. Hart, "An analysis of metal ion levels in the joint fluid of symptomatic patients with metal-on-metal hip replacements," The Journal of Bone and Joint Surgrey, vol. 93, pp. 738-745, 2011.
[42] H. Butt, L. Graf, M. Kappl, "Physics and Chemistry of Interfaces," 2004
[43] Isaac Newton, " Method of Fluxions, " Henry Woodfall, 1736
[44] M. Zonghi, M. S. Hefzy, K. C. Fu, " A Three-Dimensional Morphometrical Study of the Distal Human Femur, " Proc Inst Mech Eng H, vol. 206, pp. 147-157, 1992.
[45] S. Park, C. T. Hung and G. A. Ateshian, "Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels," OsteoArthritis and Cartilage, vol. 12, pp. 65-73, 2004.
[46] W. Z. Wang, Z. M. Jin, D. Dowson, and Y. Z. Hu, "A study of the effect of model geometry and lubricant rheology upon the elastohydrodynamic lubricantion performance of metal-on-metal hip joints,"I MechE, vol. 222, pp. 493-501, 2008.
[47] M. S. Venäläinen,M. E. Mononen, J. S. Jurvelin, J. Töyräs,T. Virén,
R.K. Korhonen, "Importance of Material Properties and Porosity of Bone on Mechanical Response of Articular Cartilage in Human Knee Joint—A Two-Dimensional Finite Element Study," J Biomech Eng, vol. 136, pp. 121005 1-8, 2014
[48] H. M. Chu, W. L. Li, and M. D. Chen, "Elastohydrodynamic lubrication of circular contacts at pure squeeze motion with non-Newtonian lubricants," Tribology International, vol. 39, pp. 897-905, 2006.
[49] J. C. Vlugter, C. J. A. Roelands, H. I. Waterman, "The viscosity temperature pressure relationship of lubricating oils and its correlation with chemical constitution," Journal of Basic Engineering, pp. 601-607, 1963.