簡易檢索 / 詳目顯示

研究生: 王柏欣
Wang, Po-Hsin
論文名稱: 固定離子於水膠電解質之高性能超級電容器研究
Studies on the immobilized ions in hydrogel electrolytes for the high performance of supercapacitors
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 160
中文關鍵詞: 水膠電解質固定離子水於鹽半互穿高分子網絡結構甜菜鹼官能化氧化石墨烯
外文關鍵詞: Hydrogel electrolytes, Immobilized ions, Water-in-salts, Semi-interpenetrating polymeric network, Betaine-functionalized graphene oxide
相關次數: 點閱:129下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過光聚合[2-(丙烯酰氧基)乙基]三甲基氯化銨(TMA)和2-丙烯酰胺-2-甲基-1-丙磺酸鈉(AMPS)通過與聚(乙二醇)二丙烯酸酯(PEGDA)製備雙離子高分子(Zwitterionic polymer, ZP)。水膠電解質(IC-Na2SO4、ZPE-Na2SO4、IA-Na2SO4 和 PVA(聚乙烯醇)-Na2SO4) 是通過膨潤於1M Na2SO4(aq)而製備。透過電化學阻抗圖譜 (Electrochemical impedance spectroscopy, EIS)的計算, 25°C下的IC-Na2SO4、IPI-Na2SO4、IA-Na2SO4、1M Na2SO4(aq)和PVA-Na2SO4的離子電導度分別為37.7mScm-1、81.6mScm-1、62.9mScm-1、56.8mScm-1和0.135mScm-1。透過介電常數分析,ZPE-Na2SO4具有最大的介電常數。根據以上的結果,我們選擇表現最好的ZPE-Na2SO4來做為超級電容器的電解質。碳材對稱超級電容器 (Carbon-based symmetric supercapacitors, CSSs) 由 1M Na2SO4(aq) (CSS-aq)、PVA-Na2SO4 (CSS-PVA) 和 ZPE-Na2SO4 (CSS-ZPE) 組裝而成。通過循環伏安法,CSS-aq、CSS-PVA 和 CSS-ZPE 的電位窗口 (Electrochemical window, EW) 分別為 1.2V、1.3V 和 1.9V。在0.5Ag-1的電流密度下,CSS-aq、CSS-PVA和CSS-ZPE的比電容分別為125 Fg-1、71 Fg-1和246.2 Fg-1。CSS-ZPE還具有121.3 WhKg-1的高能量密度、38424.6 WKg-1的高功率密度及5000次充放電循環。為了更進一步擴大EW,我們將水於鹽(Water-in-salts)引入ZP,製備出具有高離子導電度及寬EW的ZPE。 ZPE由膨潤於1m、5m、10m、15m 和 17m NaClO4(aq)來製備,分別表示為 ZPE-S1、ZPE-S5、ZPE-S10、ZPE-S15 和 ZPE-S17。其中,ZPE-S17具有17m NaClO4(aq)的1.12倍的EW。此外,NaClO4(aq)的離子導電度隨著濃度從1m至5m而上升,隨著濃度從5m增加到17m而降低。有趣的是,ZPE 的離子電導度隨著濃度增加至15m而持續增加。 在17m的情況下,ZPE-S17 仍保持 106.1 mScm-1 的高離子電導率。我們將1m NaClO4(aq)、17m NaClO4(aq)、ZPE-S1、ZPE-S15和 ZPE-S17作為電解質並組裝成CSS,依序命名為CSS-aq1、CSS-aq17、CSS-ZPE1、CSS-ZPE15及CSS-ZPE17。其中,CSS-ZPE17 表現出 2.4 V 的EW 和優異的電化學性能,在 2313.5 Wkg-1的高功率密度下展現133.5 Whkg-1 的高能量密度,提供了水性儲能裝置的巨大潛力。
    由以上結果可知,雙離子水膠中的固定離子確實增加了離子導電度,並擴大了EW。我們開始思考如何增加水膠電解質中固定離子的密度,以進一步提高離子導電性。另一方面,機械性質也是水膠電解質的重要因素之一。在此,我們提出了能夠實現超高離子電導度和優良機械性能的半互穿高分子網絡結構(Semi-interpenetrating polymeric network)電解質(ZSIPNEs)。ZSIPNEs是通過將不同含量的聚(甲基丙烯酸磺酸鈉)(pSBMA)引入到ZP中並將其膨潤於17m NaClO4(aq) 而製備。當pSBMA含量為0.1%時,ZS-0.1具有超高的離子電導度135.2mScm-1。此外,ZS-0.1顯示出優異的機械性能,包括0.36MPa的抗壓強度(Compressive strength)、74.5%的抗壓應變(Compressive strain)、33.7kPa的抗壓模量(Compressive modulus)和4.329Jm-3的韌性(Toughness)。此外,我們將17m NaClO4(aq)、ZS-0和ZS-0.1作為電解質,組裝成CSS,依序命名為C-aq、C-ZPE和C-ZSIPNE,並進行電化學測試。C-ZSIPNE顯示出2.4V的寬廣電化學窗口和優越的電化學性能,並提供83.6Whkg-1的高能量密度和19.1kWkg-1的高功率密度。在90∘的彎曲角度下,C-ZSIPNE的電容幾乎保持在100%,在柔性超級電容器中具有潛在的應用價值。
    在最後,我們提出另一個方法來增加水膠電解質的固定離子密度。我們利用甜菜鹼官能化氧化石墨烯(Betaine functional graphene oxide, BFGO),作為增強劑和解離劑,增加ZPE的離子導電度和機械性質。BFGO是透過偶氮-麥可加成反應(azo-Michael addition reaction),將磺基甜菜鹼甲基丙烯酸酯(SBMA)接枝到氧化石墨烯(Graphene oxide, GO)。然後,將BFGO引入ZP並膨潤於1M Na2SO4(aq)製備成BFGO-ZPE。BFGO-ZPE不僅含水量達到 86.4wt%,溶脹率達到 625%,同時還顯示出色的機械性能,包括84.4kPa的壓縮強度、67%的壓縮應變、14.2kPa的壓縮模量和1.16 Jm-3。此外,BFGO-ZPE 在 25°C 下具有 107mScm-1 的高離子電導度。實用上,我們將ZPE、GO-ZPE、BFGO-ZPE作為電解質應用於CSS,依序命名為CSS-ZPE、CSS-GZ及CSS-BGZ。CSS-BGZ展現46.2 WhKg-1的高能量密度和8.2 kWKg-1的高功率密度。值得注意的是,CSS-BGZ 在彎曲 90° 後還具有 100% 的電容保持率,在柔性超級電容器中具有潛在應用。

    In this study, hydrogel electrolytes with the immobilized pair ions, Zwitterionic polymer electrolytes (ZPEs), were studied for carbon-based supercapacitors. HEs with immobilized cations (ICs), immobilized pair ions, ZPEs, and immobilized anions (IAs) were prepared by controlling the mole ratio of [2-(acryloyloxy)ethyl]trimethylammonium chloride (TMA) and 2-acrylamido-2-methyl-1-propanesulfonic acid sodium (AMPS) via random copolymerization with poly(ethylene glycol) diacrylate (PEGDA). HEs (IC-Na2SO4, ZPE-Na2SO4, IA-Na2SO4, and PVA (Polyvinyl alcohol)-Na2SO4) was simply prepared by 1M Na2SO4(aq) intake. The ionic conductivities of IC-Na2SO4, ZPE-Na2SO4, IA-Na2SO4, 1M Na2SO4(aq), and PVA-Na2SO4 were 37.7 mScm-1, 81.6 mScm-1, 62.9 mScm-1, 56.8 mScm-1, and 0.135mScm-1 at 25°C via electrochemical impedance spectroscopy. Based on the dielectric analysis, ZPE-Na2SO4 with showed the largest dielectric constant was chosen for the supercapacitor test. Carbon-based symmetric supercapacitors (CSSs) were assembled with 1M Na2SO4(aq) (CSS-aq), PVA-Na2SO4 (CSS-PVA), and ZPE-Na2SO4 (CSS-ZPE). Electrochemical windows (EWs) of CSS-aq, CSS-PVA, and CSS-ZPE were respectively 1.2V, 1.3V, and 1.9V via cyclic voltammetry. The specific capacitances of CSS-aq, CSS-PVA, and CSS-ZPE were respectively 125 Fg-1, 71 Fg-1, and 246.2 Fg-1 at current density of 0.5Ag-1. Since ZPE-Na2SO4 possesses 1.43 times ionic conductivity and 1.58 times EW of the 1M Na2SO4(aq), it also possessed the remarkable energy density of 121.3 WhKg-1 and high power density of 38424.6 WKg-1 with 5000 charge/discharge cycles.
    To further enlarge the EW, we demonstrate how to prepare the hydrogel electrolytes with high ionic conductivity and wide EW through ZP with water-in-salt eletrlytes. ZPES are simply prepared by 1m, 5m, 10m, 15m, and 17m NaClO4(aq) intake, being denoted as ZPE-S1, ZPE-S5, ZPE-S10, ZPE-S15, and ZPE-S17, respectively. Among them, ZPE-S17 shows 1.12 times EW of 17m NaClO4(aq). However, the ionic conductivities of NaClO4(aq) decrease with the increasing concentration from 5m to 17m. Interestingly, ionic conductivity of ZPEs gradually increase with increasing concentration until 15m. ZPE-S17 still keep the high ionic conductivity of 106.1 mScm-1 which is about 2.73 times higher than 17m NaClO4(aq). Furthermore, the electrochemical performances of electrolytes are studied using CSSs which are assembled with 1m NaClO4(aq) (CSS-aq1), 17m NaClO4(aq) (CSS-aq17) , ZPE-S1 (CSS-ZPE1), ZPE-S15 (CSS-ZPE15) and ZPE-S17 (CSS-ZPE17). CSS-ZPE17 exhibits the wide EW of 2.4 V and the superior electrochemical performance by delivering a supreme specific energy of 133.5 Whkg−1 at a specific power of 2313.5 Wkg−1, demonstrating the great potential for aqueous energy storage devices.
    As discussed above, it is clear the immobilized ions indeed increase ionic conductivity and enlarge the electrochemical window. We start to think about how to increase the density of immobilized ions in hydrogel electrolytes to further increase ionic conductivity. On the other hand, the mechanical properties are also one of the important factors for hydrogel electrolytes. Here, we present the zwitterionic semi-interpenetrating polymeric network electrolytes (ZSIPNEs) that enable achieving ultra-high ionic conductivity and excellent mechanical properties. ZSIPNEs are synthesis by interpenetrating various content of poly(sulfobetaine methacrylate) (pSBMA) into ZP, being simply prepared by 17m NaClO4(aq) intake. At content of pSBMA of 0.1%, ZS-0.1 possesses the ultra-high ionic conductivity of 135.2 mScm-1 at 25°C. In addition, ZS-0.1 shows excellent mechanical properties, including the compressive strength of 0.36 MPa, compressive strain of 74.5%, compressive modulus of 33.7 kPa, and toughness of 4.329 Jm-3. Furthermore, the electrochemical performances of electrolytes are studied using carbon-based SCs which are assembled with 17m NaClO4(aq) (C-aq), ZS-0 (C-ZPE), and ZS-0.1 (C-ZSIPNE), being evaluated by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge. C-ZSIPNE shows the wide electrochemical window of 2.4 V and the superior electrochemical performance by delivering high energy density of 83.6Whkg-1, and high power density of 19.1kWkg-1. Under bending angles of 90∘, the capacitance of C-ZSIPNE keeps at almost 100%, being potential application in flexible supercapacitors.
    As mentioned above, the ionic conductivity of hydrogel electrolytes was increased with increasing the density of immobilized ions. Thus, we demonstrate the betaine-functionalized graphene oxide (BFGO) as roles in reinforcement filler and dissociation enhancer, enhancing the mechanical properties and ionic conductivity of ZPE. BFGO is synthesized by grafting sulfobetaine methacrylate onto the graphene oxide via oxa-Michael addition reaction. Then, BFGO-ZP is prepared by random oxidative polymerization of equimolar TMA, AMPS with PEGDA in aqueous dispersions of BFGO. BFGO-ZPE is simply prepared by 1M Na2SO4(aq) intake. BFGO enables a high water content of 86.4 wt% and swelling ratio of 625% in BFGO-ZPE which also shows excellent mechanical properties, including the compressive strength of 84.4kPa, compressive strain of 67%, compressive modulus of 14.2kPa, and toughness of 1.16 Jm-3. In addition, BFGO-ZPE possesses ultra-high ionic conductivity of 107mScm-1 at 25°C. Furthermore, the electrochemical performances of electrolytes are studied using CSS which are assembled with ZPE (CSS-ZPE), GO-ZPE (CSS-GZ), and BFGO-ZPE (CSS-BGZ). Since BFGO-ZPE possesses ultra-high ionic conductivity, CSS-BGZ possesses the remarkable high energy density of 46.2 WhKg-1 and high power density of 8.2 kWKg-1. Notably, CSS-BGZ also possesses 100% capacitance retention after bending to 90°, being potential application in flexible supercapacitors.

    中文摘要 i Abstract iii Acknowledgement v Content vii Figure Index ix Table Index iv List of abbreviations xv Chapter 1 Introduction 1 1-1 The important role of electrolyte 1 1-2 The conditions of electrolytes 4 1-2-1 Ionic conductivity 4 1-2-2 Electrochemical stability 10 1-3 Aqueous electrolyte 10 1-3-1 The advantage and disadvantage of aqueous electrolyte 10 1-3-2 WISE 11 1-3-3 Hydrogel electrolyte (HE) 14 1-4 Zwitterions and zwitterionic polymer 16 1-4-1 What are zwitterions and zwitterionic polymer? 16 1-4-2 The application of zwitterions and zwitterionic polymer in electrolytes 17 1-5 Supercapacitor 21 1-5-1 What is SC? 21 1-5-2 Electrical double layer capacitors (EDLC) 28 1-5-3 The electrochemical method for evaluating the performance of SCs 32 Chapter 2 The effect of immobilized ions on electrolytes 49 2-1 Superior HEs in both ionic conductivity and EW from the immobilized ions for carbon-based SCs 49 2-1-1 Background 49 2-1-2 Materials and Methods 50 2-1-3 Results and dissussion 54 2-1-4 Conclusions 67 2-2. Zwitterionic polymer coupled with high concentrated electrolytes to achieve high ionic conductivity and wide EW for supreme specific energy aqueous SCs 69 2-2-1. Background 69 2-2-2. Materials and Methods 70 2-2-3. Results and discussion 74 2-2-4. Conclusions 91 Chapter 3 The effect of increasing the density of immobilized ions via introducing semi-interpenetrating polymeric network structure on electrolytes 92 3-1 Zwitterionic semi-IPN electrolyte with high ionic conductivity and high modulus achieving flexible 2.4V aqueous SCs92 3-1-1 Background 92 3-1-2 Materials and Methods 94 3-1-3 Results and discussion 97 3-1-4 Conclusions 112 Chapter 4 Betaine-functionalized graphene oxide filler 114 4-1 Enhancing the ionic conductivity and mechanical properties of zwitterionic polymer electrolytes by betaine-functionalized graphene oxide for high-performance and flexible SCs 114 4-1-1 Background 114 4-1-2 Materials and Methods 115 4-1-3 Results and discussion 120 4-1-4 Conclusions 135 Chapter 5. Summary and suggestions 137 5-1 Summary 137 5-2 Suggestions 140 Reference 141

    1. L. Xia, L. Yu, D. Hu, G. Z. Chen, Electrolytes for electrochemical energy storage. Materials Chemistry Frontiers 1, 584-618 (2017).
    2. Shanhai Ge, Yongjun Leng, Teng Liu, Ryan S. Longchamps, Xiao-Guang Yang, Yue Gao, Daiwei Wang, Donghai Wang and Chao-Yang Wang*, A new approach to both high safety and high performance of lithium-ion batteries. Science advances 6, eaay7633 (2020).
    3. B. Pal, S. Yang, S. Ramesh, V. Thangadurai, R. Jose, Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances 1, 3807-3835 (2019).
    4. P.-H. Wang, C.-H. Lin, L.-H. Tseng, T.-C. Wen, Superior hydrogel electrolytes in both ionic conductivity and electrochemical window from the immobilized pair ions for carbon-based supercapacitors. Journal of the Taiwan Institute of Chemical Engineers 118, 152-158 (2021).
    5. Iain Staffell, Daniel Scamman, Anthony Velazquez Abad, Paul Balcombe, Paul E. Dodds, Paul Ekins, Nilay Shahd and Kate R. Ward I., The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science 12, 463-491 (2019).
    6. EduardoSánchez-Díeza, Edgar Ventosa, Massimo Guarnieride, Andrea Trovò, Cristina Flox, Rebeca Marcillag, Francesca Soavi, Petr Mazuri, Estibaliz Aranzabe, Raquel Ferreta, Redox flow batteries: Status and perspective towards sustainable stationary energy storage. Journal of Power Sources 481, 228804 (2021).
    7. V. Aravindan, M. Reddy, S. Madhavi, G. Rao, B. Chowdari, Electrochemical performance of α-MnO2 nanorods/activated carbon hybrid supercapacitor. Nanoscience and Nanotechnology Letters 4, 724-728 (2012).
    8. T. Xiong, T. L. Tan, L. Lu, W. S. V. Lee, J. Xue, Harmonizing energy and power density toward 2.7 V asymmetric aqueous supercapacitor. Advanced Energy Materials 8, 1702630 (2018).
    9. B. K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical supercapacitors for energy storage and conversion. Handbook of Clean Energy Systems, 1-25 (2015).
    10. M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, 129-137 (2011).
    11. Ouwei Sheng, Chengbin Jin, Jianmin Luo, Huadong Yuan, Cong Fang, Hui Huang, Yongping Gan, Jun Zhang, Yang Xia, Chu Liang, Wenkui Zhang and Xinyong Tao, Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries. Journal of Materials Chemistry A 5, 12934-12942 (2017).
    12. Kazunori Nishio, Yoshiyuki Gambe, Jun Kawaji, Atsushi Unemoto, Takefumi Okumura and Itaru Honma, High rate capability of all-solid-state lithium batteries using quasi-solid-state electrolytes containing ionic liquids. Journal of The Electrochemical Society 167, 040511 (2020).
    13. Nana Zhao, Feng Wu, Yi Xing, Wenjie Qu, Nan Chen, Yanxin Shang, Mingxia Yan, Yuejiao Li, Li Li, and Renjie Chen, Flexible Hydrogel Electrolyte with Superior Mechanical Properties Based on Poly (vinyl alcohol) and Bacterial Cellulose for the Solid-State Zinc–Air Batteries. ACS applied materials & interfaces 11, 15537-15542 (2019).
    14. K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 104, 4303-4418 (2004).
    15. B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications. (Springer Science & Business Media, 2013).
    16. Sunwook Hwang, Dong-Hui Kim, Jeong Hee Shin, Jae Eun Jang, Kyoung Ho Ahn, Chulhaeng Lee, and Hochun Lee, Ionic conduction and solution structure in LiPF6 and LiBF4 propylene carbonate electrolytes. The Journal of Physical Chemistry C 122, 19438-19446 (2018).
    17. R. M. Fuoss, Ionic association. III. The equilibrium between ion pairs and free ions. Journal of the American Chemical Society 80, 5059-5061 (1958).
    18. S. Winstein, E. Clippinger, A. Fainberg, R. Heck, G. Robinson, Salt Effects and Ion Pairs in Solvolysis and Related Reactions. III. 1 Common Ion Rate Depression and Exchange of Anions during Acetolysis2, 3. Journal of the American Chemical Society 78, 328-335 (1956).
    19. R. A. Marcus, N. Sutin, Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics 811, 265-322 (1985).
    20. K. Fumino, P. Stange, V. Fossog, R. Hempelmann, R. Ludwig, Gleichgewicht zwischen Kontakt‐und solvensseparierten Ionenpaaren in Mischungen von protischen ionischen Flüssigkeiten und molekularen Lösungsmitteln durch Polarität kontrolliert. Angewandte Chemie 125, 12667-12670 (2013).
    21. J. Hack, D. C. Grills, J. R. Miller, T. Mani, Identification of ion-pair structures in solution by vibrational stark effects. The Journal of Physical Chemistry B 120, 1149-1157 (2016).
    22. Ganesh Kamath, Richard W. Cutler, Sanket A. Deshmukh, Mehdi Shakourian-Fard, Riley Parrish, Joshua Huether, Darryl P. Butt, H. Xiong, and Subramanian K. R. S. Sankaranarayanan, In silico based rank-order determination and experiments on nonaqueous electrolytes for sodium ion battery applications. The Journal of Physical Chemistry C 118, 13406-13416 (2014).
    23. Haiying Che, Suli Chen, Yingying Xie, Hong Wang, Khalil Amine, Xiao-Zhen Liaoa and Zi-Feng Ma, Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy & Environmental Science 10, 1075-1101 (2017).
    24. Y. Cai, B. Zhao, J. Wang, Z. Shao, Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance. Journal of Power Sources 253, 80-89 (2014).
    25. H. Mao, in Offshore Technology Conference Asia. (Offshore Technology Conference, 2016).
    26. A. Ponrouch, E. Marchante, M. Courty, J.-M. Tarascon, M. R. Palacín, In search of an optimized electrolyte for Na-ion batteries. Energy & Environmental Science 5, 8572-8583 (2012).
    27. X. Bu, L. Su, Q. Dou, S. Lei, X. Yan, A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. Journal of Materials Chemistry A 7, 7541-7547 (2019).
    28. B. Ravikumar, M. Mynam, B. Rai, Effect of salt concentration on properties of lithium ion battery electrolytes: a molecular dynamics study. The Journal of Physical Chemistry C 122, 8173-8181 (2018).
    29. Bhupender Pal, Syam G.Krishnan, Bincy Lathakumary Vijayan, Midhun Haril, Chun-ChenYang, Fabian I.Ezemac, Mashitah Mohd Yusoff, Rajan Jose, In situ encapsulation of tin oxide and cobalt oxide composite in porous carbon for high-performance energy storage applications. Journal of Electroanalytical Chemistry 817, 217-225 (2018).
    30. M. Yu et al., Boosting the energy density of carbon‐based aqueous supercapacitors by optimizing the surface charge. Angewandte Chemie 129, 5546-5551 (2017).
    31. Minghao Yu, Dun Lin, Haobin Feng, Yinxiang Zeng, Prof. Yexiang Tong, Prof. Xihong Lu, Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nature communications 6, 1-10 (2015).
    32. Q. Gao, L. Demarconnay, E. Raymundo-Piñero, F. Béguin, Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy & Environmental Science 5, 9611-9617 (2012).
    33. V. Khomenko, E. Raymundo-Piñero, F. Béguin, A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. Journal of Power Sources 195, 4234-4241 (2010).
    34. Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova‐Jurcakova, Synthesis of phosphorus‐doped graphene and its wide potential window in aqueous supercapacitors. Chemistry–A European Journal 21, 80-85 (2015).
    35. Y. Wang, X. Meng, J. Sun, Y. Liu, L. Hou, Recent Progress in “Water-in-Salt” Electrolytes Toward Non-lithium Based Rechargeable Batteries. Frontiers in Chemistry 8, 595 (2020).
    36. Liumin Suo, Oleg Borodin, Tao Gao, Marco Olguin, Janet Ho, Xiulin Fan, Chao Luo, Chunsheng Wang, Kang Xu, “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938-943 (2015).
    37. George Hasegawa, Kazuyoshi Kanamori, Tsutomu Kiyomura, Hiroki Kurata, Takeshi Abe, and Kazuki Nakanishi, Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors. Chemistry of Materials 28, 3944-3950 (2016).
    38. Chongyin Yang, Ji Chen, Xiao Ji, Travis P. Pollard, Xujie Lü, Cheng-Jun Sun, Singyuk Hou, Qi Liu, Cunming Liu, Tingting Qing, Yingqi Wang, Oleg Borodin, Yang Ren, Kang Xu & Chunsheng Wang, Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245-250 (2019).
    39. Liumin Suo, Oleg Borodin, Wei Sun, Xiulin Fan, Chongyin Yang, Fei Wang, Tao Gao 1, Zhaohui Ma, Marshall Schroeder, Arthur von Cresce, Selena M Russell, Michel Armand, Austen Angell, Kang Xu, Chunsheng Wang, Advanced high‐voltage aqueous lithium‐ion battery enabled by “water‐in‐bisalt” electrolyte. Angewandte Chemie 128, 7252-7257 (2016).
    40. Maria R. Lukatskay, Jeremy I. Feldblyum, David G. Mackanic, Franziska Lissel, Dominik L. Michels, Yi Cuie and Zhenan Bao , Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy & Environmental Science 11, 2876-2883 (2018).
    41. Qingyun Dou, Shulai Lei, Da-Wei Wang, Qingnuan Zhang, Dewei Xiao, Hongwei Guo, Aiping Wang, Hui Yang, Yongle Li, Siqi Shi and Xingbin Yan , Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy & Environmental Science 11, 3212-3219 (2018).
    42. Zifeng Wang, Hongfei Li, Zijie Tang, Zhuoxin Liu, Zhaoheng Ruan, Longtao Ma, Qi Yang, Donghong Wang, Chunyi Zhi, Hydrogel electrolytes for flexible aqueous energy storage devices. Advanced Functional Materials 28, 1804560 (2018).
    43. M.-C. Sin, S.-H. Chen, Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes. Polymer journal 46, 436-443 (2014).
    44. Kai Wang, Xiong Zhang, Chen Li, Xianzhong Sun, Qinghai Meng, Yanwei Ma, Zhixiang Wei, Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Advanced materials 27, 7451-7457 (2015).
    45. N. Batisse, E. Raymundo-Piñero, A self-standing hydrogel neutral electrolyte for high voltage and safe flexible supercapacitors. Journal of Power Sources 348, 168-174 (2017).
    46. Lingzhu Zhao, Jingchuan Fu, ZhiDua, Xiaobo Jia, Yanyu Qu, Feng Yu, Jie Du, Yong Chen, High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. Journal of Membrane Science 593, 117428 (2020).
    47. Y. Guo, J. Bae, F. Zhao, G. Yu, Functional hydrogels for next-generation batteries and supercapacitors. Trends in Chemistry 1, 335-348 (2019).
    48. H. Ohno, M. Yoshizawa-Fujita, Y. Kohno, Design and properties of functional zwitterions derived from ionic liquids. Physical Chemistry Chemical Physics 20, 10978-10991 (2018).
    49. J. Ladd, Z. Zhang, S. Chen, J. C. Hower, S. Jiang, Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9, 1357-1361 (2008).
    50. Ang Li, Hannah P Luehmann, Guorong Sun, Sandani Samarajeewa, Jiong Zou, Shiyi Zhang, Fuwu Zhang, Michael J Welch, Yongjian Liu, Karen L Wooley, Synthesis and in vivo pharmacokinetic evaluation of degradable shell cross-linked polymer nanoparticles with poly (carboxybetaine) versus poly (ethylene glycol) surface-grafted coatings. ACS nano 6, 8970-8982 (2012).
    51. Y. Kadoma, Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Koubunshi Ronbunshu 35, 423-427 (1978).
    52. Zheng Zhang, Min Zhang, Shengfu Chen, Thomas A. Horbett, Buddy D.Ratner, ShaoyiJiang, Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29, 4285-4291 (2008).
    53. Y. Chang, Y. J. Shih, C. J. Lai, H. H. Kung, S. Jiang, Blood‐inert surfaces via ion‐pair anchoring of zwitterionic copolymer brushes in human whole blood. Advanced Functional Materials 23, 1100-1110 (2013).
    54. M. Hamidi, A. Azadi, P. Rafiei, Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews 60, 1638-1649 (2008).
    55. Y. Chang, W.-J. Chang, Y.-J. Shih, T.-C. Wei, G.-H. Hsiue, Zwitterionic sulfobetaine-grafted poly (vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS applied materials & interfaces 3, 1228-1237 (2011).
    56. H. Ohno, M. Yoshizawa, W. Ogihara, A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture. Electrochimica Acta 48, 2079-2083 (2003).
    57. Churat Tiyapiboonchaiya, Jennifer M. Pringle, Jiazeng Sun, Nolene Byrne, Patrick C. Howlett, Douglas R. MacFarlane & Maria Forsyth, The zwitterion effect in high-conductivity polyelectrolyte materials. Nature materials 3, 29-32 (2004).
    58. N. Choudhury, S. Sampath, A. Shukla, Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy & Environmental Science 2, 55-67 (2009).
    59. A. Erfani, J. Seaberg, C. P. Aichele, J. D. Ramsey, Interactions between biomolecules and zwitterionic moieties: a review. Biomacromolecules 21, 2557-2573 (2020).
    60. Xu Peng, Huili Liu, Qin Yin, Junchi Wu, Pengzuo Chen, Guangzhao Zhang, Guangming Liu, Changzheng Wu & Yi Xie, A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nature communications 7, 1-8 (2016).
    61. K. Ge, G. Liu, Suppression of self-discharge in solid-state supercapacitors using a zwitterionic gel electrolyte. Chemical Communications 55, 7167-7170 (2019).
    62. L. L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 38, 2520-2531 (2009).
    63. M. Lu, Supercapacitors: materials, systems, and applications. (John Wiley & Sons, 2013).
    64. M. Toupin, D. Bélanger, I. R. Hill, D. Quinn, Performance of experimental carbon blacks in aqueous supercapacitors. Journal of power sources 140, 203-210 (2005).
    65. R. Dell, D. A. J. Rand, Understanding batteries. (Royal society of chemistry, 2001).
    66. H. I. Becker. (Google Patents, 1957).
    67. D. L. Boos. (Google Patents, 1970).
    68. S. Das, A. Dey, A. Biswas, A. Mohanty, in 2014 1st International Conference on Non Conventional Energy (ICONCE 2014). (IEEE, 2014), pp. 61-64.
    69. M. P. Down, C. E. Banks, 2D materials as the basis of supercapacitor devices. 2D Nanomaterials for Energy Applications, 97-130 (2020).
    70. I. E. Rauda, V. Augustyn, B. Dunn, S. H. Tolbert, Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. Accounts of chemical research 46, 1113-1124 (2013).
    71. R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica acta 45, 2483-2498 (2000).
    72. 胡啟章, 電化學原理與方法. (五南圖書出版股份有限公司, 2002).
    73. M. de Rooij, Electrochemical methods: fundamentals and applications. Anti-Corrosion Methods and Materials, (2003).
    74. Xiong Zhang, Haitao Zhang, Chen Li, Kai Wang, Xianzhong Sun and Yanwei Ma, Recent advances in porous graphene materials for supercapacitor applications. Rsc Advances 4, 45862-45884 (2014).
    75. T. Chen, L. Dai, Carbon nanomaterials for high-performance supercapacitors. Materials Today 16, 272-280 (2013).
    76. D. L. Langhus. (ACS Publications, 2001).
    77. Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials 2, 30-37 (2019).
    78. D. Aikens. (ACS Publications, 1983).
    79. 王柏欣, 光固化高分子離子液體/離子液體作為固態電解質應用於超級電容器(2017).
    80. B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices. The Journal of Physical Chemistry C 122, 194-206 (2018).
    81. V. S. Bhat et al. Vinay S. Bhat, Supriya S, Titilope John Jayeoye, Thitima Rujiralai, Uraiwan Sirimahachai, Kwok Feng Chong, Gurumurthy Hegde, Influence of surface properties on electro‐chemical supercapacitors utilizing Callerya atropurpurea pod derived porous nanocarbons: Structure property relationship between porous structures to energy storage devices. Nano Select 1, 226-243 (2020).
    82. S. Carrara, Strasbourg, Towards new efficient nanostructured hybrid materials for ECL applications (2017).
    83. P. Taberna, P. Simon, J.-F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. Journal of the Electrochemical Society 150, A292 (2003).
    84. K. Sheng, Y. Sun, C. Li, W. Yuan, G. Shi, Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Scientific reports 2, 1-5 (2012).
    85. N. K. Sidhu, A. Rastogi, Bifacial carbon nanofoam-fibrous PEDOT composite supercapacitor in the 3-electrode configuration for electrical energy storage. Synthetic Metals 219, 1-10 (2016).
    86. L. Hao, X. Li, L. Zhi. Carbonaceous electrode materials for supercapacitors (Wiley Online Library, 2013).
    87. R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials. Journal of Materials Chemistry 21, 9938-9954 (2011).
    88. Gaojun Wang, Lijun Fu, Nahong Zhao, Lichun Yang, Yuping Wu, Haoqing Wu, An aqueous rechargeable lithium battery with good cycling performance. Angewandte Chemie 119, 299-301 (2007).
    89. S. Alipoori, S. Mazinani, S. H. Aboutalebi, F. Sharif, Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. journal of energy storage 27, 101072 (2020).
    90. A. Virya, K. Lian, Li2SO4-polyacrylamide polymer electrolytes for 2.0 V solid symmetric supercapacitors. Electrochemistry Communications 81, 52-55 (2017).
    91. A. Lewandowski, M. Zajder, E. Frąckowiak, F. Beguin, Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochimica Acta 46, 2777-2780 (2001).
    92. Jeng-An Wang, Yi-Ting Lu, Sheng-Chi Lin, Yu-Sheng Wang, Chen-Chi M. Ma*, and Chi-Chang Hu*., Designing a novel polymer electrolyte for improving the electrode/electrolyte interface in flexible all-solid-state electrical double-layer capacitors. ACS applied materials & interfaces 10, 17871-17882 (2018).
    93. B. Donnio, A. Abe, Supramolecular polymers, polymeric betains, oligomers. (Springer, 2006), vol. 201.
    94. R. Lalani, L. Liu, Electrospun zwitterionic poly (sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules 13, 1853-1863 (2012).
    95. Chuan Leng, Hsiang-Chieh Hung, Olivia A. Sieggreen, Yuting Li, Shaoyi Jiang, and Zhan Chen, Probing the surface hydration of nonfouling zwitterionic and poly (ethylene glycol) materials with isotopic dilution spectroscopy. The Journal of Physical Chemistry C 119, 8775-8780 (2015).
    96. J. Cardoso, A. Huanosta, O. Manero, Ionic conductivity studies on salt-polyzwitterion systems. Macromolecules 24, 2890-2895 (1991).
    97. S. P. Candhadai Murali, A. S. Samuel, Zinc ion conducting blended polymer electrolytes based on room temperature ionic liquid and ceramic filler. Journal of Applied Polymer Science 136, 47654 (2019).
    98. Chen-Jung Lee, Haiyan Wu, Yang Hu, Megan Young, Huifeng Wang, Dylan Lynch, Fujian Xu§Orcid, Hongbo Cong, and Gang Cheng, Ionic conductivity of polyelectrolyte hydrogels. ACS applied materials & interfaces 10, 5845-5852 (2018).
    99. Po-Hsin Wang, Tzong-Liu Wang, Wen-Churng Lin, Hung-Yin Lin, Mei-Hwa Lee, and Chien-Hsin Yang*, Crosslinked polymer ionic liquid/ionic liquid blends prepared by photopolymerization as solid-state electrolytes in supercapacitors. Nanomaterials 8, 225 (2018).
    100. Q. Hu, H. Zhao, S. Ouyang, Understanding water structure from Raman spectra of isotopic substitution H 2 O/D 2 O up to 573 K. Physical Chemistry Chemical Physics 19, 21540-21547 (2017).
    101. Kwang SunRyu, Youngil Lee, Kyoo-Seung Han, Yong Joon Park, Man GuKang, Nam-GyuPark, Soon Ho Chang, Electrochemical supercapacitor based on polyaniline doped with lithium salt and active carbon electrodes. Solid State Ionics 175, 765-768 (2004).
    102. Y. Zhao, Y. Wang, Tailored Solid Polymer Electrolytes by Montmorillonite with High Ionic Conductivity for Lithium-Ion Batteries. Nanoscale research letters 14, 1-6 (2019).
    103. C. Liu, F. Li, L. P. Ma, H. M. Cheng, Advanced materials for energy storage. Advanced materials 22, E28-E62 (2010).
    104. C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano letters 10, 4863-4868 (2010).
    105. Francesco Bonaccorso*, Luigi Colombo, Guihua Yu, Meryl Stoller, Valentina Tozzini, Andrea C. Ferrari, Rodney S. Ruoff7, Vittorio Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, (2015).
    106. M. Hahn, O. Barbieri, R. Gallay, R. Kötz, A dilatometric study of the voltage limitation of carbonaceous electrodes in aprotic EDLC type electrolytes by charge-induced strain. Carbon 44, 2523-2533 (2006).
    107. Faxing Wang, Xiongwei Wu, Xinhai Yuan, Zaichun Liu, Yi Zhang, Lijun Fu, Yusong Zhu, Qingming Zhou, Yuping Wu and Wei Huang , Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews 46, 6816-6854 (2017).
    108. J. Durst,* A. Siebel, C. Simon, F. Hasché, J. Herranza and H. A. Gasteigera, New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science 7, 2255-2260 (2014).
    109. M. Yu, Y. Lu, H. Zheng, X. Lu, New insights into the operating voltage of aqueous supercapacitors. Chemistry–A European Journal 24, 3639-3649 (2018).
    110. Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nature Energy 4, 269-280 (2019).
    111. M. Marcinek, A. Bac, P. Lipka, A. Zalewska, G. Żukowska, R. Borkowska, and W. Wieczorek, Effect of filler surface group on ionic interactions in PEG− LiClO4− Al2O3 composite polyether electrolytes. The Journal of Physical Chemistry B 104, 11088-11093 (2000).
    112. Y. Yap, A. You, L. Teo, H. Hanapei, Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. Int. J. Electrochem. Sci 8, 2154-2163 (2013).
    113. A. Oliveira, C. Beatrice, F. Passador, L. Pessan, in AIP Conference Proceedings. (AIP Publishing LLC, 2016), vol. 1779, pp. 040006.
    114. K. Chatterjee, A. D. Pathak, K. K. Sahu, A. K. Singh, New Thiourea-Based Ionic Liquid as an Electrolyte Additive to Improve Cell Safety and Enhance Electrochemical Performance in Lithium-Ion Batteries. ACS omega 5, 16681-16689 (2020).
    115. Rida Nurul Shelni Rofika, Wagiyo Honggowiranto, Heri Jodi, Sudaryanto Sudaryanto, Evvy Kartini & Rahmat Hidayat, The effect of acetonitrile as an additive on the ionic conductivity of imidazolium-based ionic liquid electrolyte and charge-discharge capacity of its Li-ion battery. Ionics 25, 3661-3671 (2019).
    116. Myeong HwanLee, Sung JooKim, DongheeChang, Jin soo Kim, Sehwan Moon, Kyungbae Oh, Kyu-YoungPark, Won MoSeong, Hyeokjun Park, Giyun Kwon, Byungju Lee, Kisuk Kang, Toward a low-cost high-voltage sodium aqueous rechargeable battery. Materials Today 29, 26-36 (2019).
    117. J. Yin, C. Zheng, L. Qi, H. Wang, Concentrated NaClO4 aqueous solutions as promising electrolytes for electric double-layer capacitors. Journal of Power Sources 196, 4080-4087 (2011).
    118. Yuki Yamada, Kenji Usui, Keitaro Sodeyama, Seongjae Ko, Yoshitaka Tateyama & Atsuo Yamada, Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nature Energy 1, 1-9 (2016).
    119. Hui Peng, Guofu Ma, Kanjun Sun, Zhiguo Zhang, Qian Yang, Feitian Rana and Ziqiang Lei, A facile and rapid preparation of highly crumpled nitrogen-doped graphene-like nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A 3, 13210-13214 (2015).
    120. Prof. Junhong Guo, Yalan Ma, Dr. Kun Zhao, Yue Wang, Prof. Baoping Yang, Prof. Jinfeng Cui, Prof. Xingbin Yan, High‐Performance and Ultra‐Stable Aqueous Supercapacitors Based on a Green and Low‐Cost Water‐In‐Salt Electrolyte. ChemElectroChem 6, 5433-5438 (2019).
    121. D. Linden, in Fuel and energy abstracts. (1995), vol. 4, pp. 265.
    122. C. Zhong et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews 44, 7484-7539 (2015).
    123. L. Yu, G. Z. Chen, Ionic liquid-based electrolytes for supercapacitor and supercapattery. Frontiers in chemistry 7, 272 (2019).
    124. Le-Qing Fan, Qiu-Mei Tu, Cheng-Long Geng, Yong-LanWang, Si-JiaSun, Yun-Fang Huang, Ji-HuaiWu, Improved redox-active ionic liquid-based ionogel electrolyte by introducing carbon nanotubes for application in all-solid-state supercapacitors. International Journal of Hydrogen Energy 45, 17131-17139 (2020).
    125. Yun Gu, Le-Qing Fan, Jian-Ling Huang, Cheng-Long Geng, Jian-Ming Lin, Miao-Liang Huang, Yun-Fang Huang, Ji-Huai Wu, N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. Journal of Power Sources 425, 60-68 (2019).
    126. M. Ghasemi, Z. Fahimi, O. Moradlou, M. R. Sovizi, Porous gel polymer electrolyte for the solid state metal oxide supercapacitor with a wide potential window. Journal of the Taiwan Institute of Chemical Engineers 118, 223-231 (2021).
    127. Ta-Chung Liu, Sutarsis Sutarsis, Xin-Yan Zhong, Wei-Chen Lin, Syun-Hong Chou, Nindita Kirana, Pei-Yu Huang, Yu-Chieh Lo, Jeng-Kuei Chang, Pu-WeiWu, San-Yuan Chen, An interfacial wetting water based hydrogel electrolyte for high-voltage flexible quasi solid-state supercapacitors. Energy Storage Materials 38, 489-498 (2021).
    128. H. J. Min, M. S. Park, M. Kang, J. H. Kim, Excellent film-forming, ion-conductive, zwitterionic graft copolymer electrolytes for solid-state supercapacitors. Chemical Engineering Journal 412, 127500 (2021).
    129. M. Oyen, Mechanical characterisation of hydrogel materials. International Materials Reviews 59, 44-59 (2014).
    130. K. D. Fong, T. Wang, H.-K. Kim, R. V. Kumar, S. K. Smoukov, Semi-interpenetrating polymer networks for enhanced supercapacitor electrodes. ACS energy letters 2, 2014-2020 (2017).
    131. J. Wang, H. Chen, Y. Xiao, X. Yu, X. Li, PAMPS/PVA/MMT Semi-Interpenetrating Polymer Network Hydrogel Electrolyte for Solid-State Supercapacitors. Int. J. Electrochem. Sci. 14, 1817-1829 (2019).
    132. L. Chen, J. Gong, Y. Osada, Novel thermosensitive IPN hydrogel having a phase transition without volume change. Macromolecular rapid communications 23, 171-174 (2002).
    133. Tao Lin Sun, Takayuki Kurokawa, Shinya Kuroda, Abu Bin Ihsan, Taigo Akasaki, Koshiro Sato, Md. Anamul Haque, Tasuku Nakajima & Jian Ping Gong, Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature materials 12, 932-937 (2013).
    134. S. Das, A. Ghosh, Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. AIP Advances 5, 027125 (2015).
    135. Yi-Han Su, Yu-Hsing Lin, Yu-Hsien Tseng, Yuh-Lang Lee, Jeng-Shiung Jan, Chi-Cheng Chiu, Sheng-Shu Hou, Hsisheng Teng, Postinjection gelation of an electrolyte with high storage permittivity and low loss permittivity for electrochemical capacitors. Journal of Power Sources 481, 228869 (2021).
    136. A. Arof, S. Amirudin, S. Yusof, I. Noor, A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Physical Chemistry Chemical Physics 16, 1856-1867 (2014).
    137. Haiyan Yin, Daniel R. King*, Tao Lin Sun, Yoshiyuki Saruwatari, Tasuku Nakajima, Takayuki Kurokawa, and Jian Ping Gong*, Polyzwitterions as a Versatile Building Block of Tough Hydrogels: From Polyelectrolyte Complex Gels to Double-Network Gels. ACS Applied Materials & Interfaces 12, 50068-50076 (2020).
    138. Wei Cui, Ruijie Zhu, Yong Zheng, Qifeng Mu, Menghan Pi, Qiang Chen and Rong Ran, Transforming non-adhesive hydrogels to reversible tough adhesives via mixed-solvent-induced phase separation. Journal of Materials Chemistry A 9, 9706-9718 (2021).
    139. Yongqi Deng, Hongfei Wang, Kefu Zhang, Jingwen Shao, Jun Qiu, Juan Wu, Yihan Wu and Lifeng Yan, A high-voltage quasi-solid-state flexible supercapacitor with a wide operational temperature range based on a low-cost “water-in-salt” hydrogel electrolyte. Nanoscale 13, 3010-3018 (2021).
    140. Lixin Dai, Oier Arcelus, Lu Sun, Haixiao Wang, Javier Carrasco, Hengbin Zhang, Wei Zhang and Jun Tang, Embedded 3D Li+ channels in a water-in-salt electrolyte to develop flexible supercapacitors and lithium-ion batteries. Journal of Materials Chemistry A 7, 24800-24806 (2019).
    141. Hongfei Wang, Yongqi Deng, Jun Qiu, Juan Wu, Kefu Zhang, Jingwen Shao, Lifeng Yan, In Situ Formation of “Dimethyl Sulfoxide/Water‐in‐Salt”‐Based Chitosan Hydrogel Electrolyte for Advanced All‐Solid‐State Supercapacitors. ChemSusChem 14, 632-641 (2021).
    142. Guofu Ma, Jiajia Li, Kanjun Sun, Hui Peng, Jingjing Mu, Ziqiang Lei, High performance solid-state supercapacitor with PVA–KOH–K3 [Fe (CN) 6] gel polymer as electrolyte and separator. Journal of Power Sources 256, 281-287 (2014).
    143. N. R. Chodankar, D. P. Dubal, A. C. Lokhande, C. D. Lokhande, Ionically conducting PVA–LiClO4 gel electrolyte for high performance flexible solid state supercapacitors. Journal of colloid and interface science 460, 370-376 (2015).
    144. Y.-R.Chen, K.-F.Chiu, H.C.Lin, C.-L.Chen, C.Y.Hsieh, C.B.Tsai, B.T.T.Chu, Graphene/activated carbon supercapacitors with sulfonated-polyetheretherketone as solid-state electrolyte and multifunctional binder. Solid state sciences 37, 80-85 (2014).
    145. D. Karabelli, J.-C. Lepretre, F. Alloin, J.-Y. Sanchez, Poly (vinylidene fluoride)-based macroporous separators for supercapacitors. Electrochimica Acta 57, 98-103 (2011).
    146. A Jagadeesan, M Sasikumar, R Hari Krishna, N Raja, D Gopalakrishna, S Vijayashree and P Sivakumar, High electrochemical performance of nano TiO2 ceramic filler incorporated PVC-PEMA composite gel polymer electrolyte for Li-ion battery applications. Materials Research Express 6, 105524 (2019).
    147. S. Ketabi, K. Lian, Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochimica Acta 103, 174-178 (2013).
    148. WeishangJia, ZhilingLi, ZhenruiWu, LipingWang, BoWu, YuehuiWang, YaCao, JingzeLi, Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. Solid State Ionics 315, 7-13 (2018).
    149. Z. Yu, Y. Bai, J. H. Wang, Y. Li, Effects of Functional Additives on Structure and Properties of Polycarbonate-Based Composites Filled with Hybrid Chopped Carbon Fiber/Graphene Nanoplatelet Fillers. ES Energy & Environment 12, 66-76 (2021).
    150. M. Yuan, J. Erdman, C. Tang, H. Ardebili, High performance solid polymer electrolyte with graphene oxide nanosheets. Rsc Advances 4, 59637-59642 (2014).
    151. Y. Zhou, P. Wang, G. Ruan, P. Xu, Y. Ding, Synergistic effect of P [MPEGMA-IL] modified graphene on morphology and dielectric properties of PLA/PCL blends. ES Mater. Manuf. 11, 20-29 (2021).
    152. Cuiyun Liu, Hongyu Liu, Tianhui Xiong, Airong Xu,Bingli Pan and Keyong Tang, Graphene oxide reinforced alginate/PVA double network hydrogels for efficient dye removal. Polymers 10, 835 (2018).
    153. Naoko Yoshida, Yasushi Miyata, Kasumi Doi, Yuko Goto, Yuji Nagao, Ryugo Tero & Akira Hiraishi, Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria. Scientific reports 6, 1-11 (2016).
    154. N.I.Zaaba, K.L.Foo, U.Hashim, S.J.Tan, Wei-Wen Liu, C.H.Voon, Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia engineering 184, 469-477 (2017).
    155. F. Tuinstra, J. L. Koenig, Raman spectrum of graphite. The Journal of chemical physics 53, 1126-1130 (1970).
    156. J. Gu, J. She, Y. Yue, Micro/Nanoscale Thermal Characterization Based on Spectroscopy Techniques. ES Energy & Environment 9, 15-27 (2020).
    157. Jun Chen, Xiaosu Wang, Yan Huang, Shanshan Lv, Xiaohua Cao, Jimmy Yun and Dapeng Cao, Adsorption removal of pollutant dyes in wastewater by nitrogen-doped porous carbons derived from natural leaves. Engineered Science 5, 30-38 (2018).
    158. A. C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Physical review B 61, 14095 (2000).
    159. K. N. Kudin et al., Raman spectra of graphite oxide and functionalized graphene sheets. Nano letters 8, 36-41 (2008).
    160. S. Eigler, C. Dotzer, A. Hirsch, Visualization of defect densities in reduced graphene oxide. Carbon 50, 3666-3673 (2012).
    161. Kunli Goh, LaurentiaSetiawan, LiWei, RongmeiSi, Anthony G.Fane, RongWang, YuanChen, Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. Journal of Membrane Science 474, 244-253 (2015).
    162. H. Dong, Y. Li, H. Chai, Y. Cao, X. Chen, Hydrothermal synthesis of CuCo2S4 nano-structure and N-doped graphene for high-performance aqueous asymmetric supercapacitors. ES Energy & Environment 4, 19-26 (2019).
    163. J. Reimer, M. Steele-MacInnis, J. r. M. Wambach, F. Vogel, Ion association in hydrothermal sodium sulfate solutions studied by modulated FT-IR-Raman spectroscopy and molecular dynamics. The Journal of Physical Chemistry B 119, 9847-9857 (2015).

    下載圖示 校內:立即公開
    校外:2022-08-09公開
    QR CODE