簡易檢索 / 詳目顯示

研究生: 吳育成
Wu, Yu-Cheng
論文名稱: 基於FPGA與CameraLink之即時適應性光學系統
Real-time Adaptive Optics System based on FPGA and CameraLink
指導教授: 張家源
Chang, Chia-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 59
中文關鍵詞: 適應性光學Shack-Hartmann波前感測器可調變聚焦鏡現場可程式邏輯閘陣列
外文關鍵詞: adaptive optics system, Shack-Hartmann wavefront sensor, FPGA, Camera Link
相關次數: 點閱:144下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 適應性光學(adaptive optics system,AOS)常被應用於天文望遠鏡、多光子顯微鏡、雷射加工等領域中。AOS主要由三個部分組成:波前感測器、波前修正器跟閉迴圈控制器。AOS的目的在於偵測光學路徑中的干擾,並將其補償以提升系統的效率。此論文中,我們開發了結合現場可程式邏輯閘陣列(field-programmable gate array,FPGA)與CameraLink的Shack-Hartmann感測器(Shack-Hartmann wavefront sensor,SHWS),運算頻率高達200 Hz,快速的波前感測器可以幫助我們準確地捕捉到干擾的快速變化。波前修正器的部分,我們使用32 channel的可調變聚焦鏡(deformable mirror,DM),DM的好處在於響應頻率達到kHz等級,我們鑑別DM的響應矩陣,並建立了高對比度的單一Zernike像差模組。在閉迴圈控制器的設計上,我們將基於像差模組以及干擾,轉移函數設計成可以預測弦波變化的八個獨立控制器。我們結合上述三個部分,使AOS可以補償從靜態到20 Hz的動態干擾。同時藉由Fast Fourier Transform (FFT)分析干擾的頻率,使我們可以隨時偵測干擾頻率的變化並更新閉迴圈控制器將其補償。

    Adaptive optics (AO) is developed for compensating the aberrations in optics and specimen to restore the optical performance for various applications such as image formation, laser processing, and beam shaping. In order to reduce the controller complexity and extend the compensation capacity from static aberration to dynamic disturbance, we have developed the AO system which is able to track dynamic disturbance and adjust the controller parameters for fast compensation. The CameraLink and field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) operated at 200 Hz and we offline identify the driving voltage vectors for the 32-channel deformable mirror (DM) to generate individual Zernike mode in optical system. The incoming aberration is identified online in real time and the analyzed frequency is used to update the controller. We implement 8 parallel independent discrete controllers in FPGA to track and compensate the corresponding Zernike mode individually. The experimental results show the AO system with the parallel model-based controllers can compensate the static aberrations and the dynamic disturbance up to 20 Hz.

    摘要 I Extended Abstract II 致謝 VII 目錄 VIII 圖目錄 X 表目錄 XIV 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 3 1-4 論文架構 4 第二章 Shack-Hartmann 波前感測器 5 2-1 SHWS基本原理 5 2-1-1 Zernike多項式 8 2-2 SHWS架構 10 2-3 SHWS校正與量測 12 2-4 CameraLink 15 2-5 基於FPGA與CameraLink之SHWS架構 16 2-6 實驗結果 20 第三章 波前修正器 23 3-1 可調變式聚焦鏡 23 3-2 多通道高壓驅動器與控制 24 3-3 系統鑑別 26 3-3-1 模組鑑別光路架構 27 3-3-2 鑑別方法 29 第四章 適應性光學系統 33 4-1 整合適應性光學系統之聚焦光路架構 33 4-2 回饋控制器 38 4-2-1 離散控制器設計方法 38 4-2-2 多通道PI控制器 39 4-2-3 藉由頻率補償項優化多通道PI控制器 42 4-2-4 MATLAB Simulink 43 4-2-5 AOS控制器設計 43 第五章 結果與討論 46 5-1 靜態干擾修正 46 5-2 動態干擾修正 47 5-2-1 不同頻率下干擾修正 48 5-2-2 動態頻率下干擾修正 50 第六章 結論與未來討論 53 6-1 結果與討論 53 6-2 未來展望 54 參考文獻 55

    [1] H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236(1953).
    [2] J. M. Beckers, “Adaptive optics for astronomy: principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–62 (1993).
    [3] P. Kern, “Adaptive optics prototype system for infrared astronomy, I: system description,” SPIE Proc. 1271, 243–251 (1990).
    [4] M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light: Sci. Appl. 3(4), e165 (2014).
    [5] N. Ji, “Adaptive optical fluorescence microscopy,” Nat. Methods 14(4), 374–380 (2017).
    [6] J.-H. Park, Z. Yu, K. Lee, P. Lai, and Y. Park, “Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward in vivo applications,” APL Photonics 3(10), 100901 (2018).
    [7] M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
    [8] D. Sinefeld, H. P. Paudel, D. G. Ouzounov, T. G. Bifano, and C. Xu, “Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence,” Opt. Express 23(24), 31472–31483 (2015).
    [9] M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
    [10] P. Pozzi, D. Wilding, O. Soloviev, H. Verstraete, L. Bliek, G. Vdovin, and M. Verhaegen, “High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy,” Opt. Express 25(2), 949–959 (2017).
    [11] M. Booth, D. Andrade, D. Burke, B. Patton, and M. Zurauskas, “Aberrations and adaptive optics in super-resolution microscopy,” Microscopy 64(4), 251–261 (2015).
    [12] W. Zheng, Y. Wu, P. Winter, R. Fischer, D. D. Nogare, A. Hong, C. McCormick, R. Christensen, W. P. Dempsey, D. B. Arnold, J. Zimmerberg, A. Chitnis, J. Sellers, C. Waterman, and H. Shroff, “Adaptive optics improves multiphoton super-resolution imaging,” Nat. Methods 14(9), 869–872 (2017).
    [13] M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15(8), 583–586 (2018).
    [14] C.-Y. Chang, L.-C. Cheng, H.-W. Su, Y. Y. Hu, K.-C. Cho, W.-C. Yen, C. Xu, C. Y. Dong, and S.-J. Chen, “Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy,” Biomed. Opt. Express 5(6), 1768–1777 (2014).
    [15] T. L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), 1392 (2018).
    [16] A. Hubert, F. Harms, R. Juvénal, P. Treimany, X. Levecq, V. Loriette, G. Farkouh, F. Rouyer, and A. Fragola, “Adaptive optics light-sheet microscopy based on direct wavefront sensing without any guide star,” Opt. Lett. 44(10), 2514-2517 (2019).
    [17] M. Jenne, D. Flamm, T. Ouaj, J. Hellstern, J. Kleiner, D. Grossmann, M. Koschig, M. Kaiser, M. Kumkar, and S. Nolte, “High-quality tailored-edge cleaving using aberration-corrected Bessel-like beams,” Opt. Lett. 43(13), 3164–3167 (2018).
    [18] P. S. Salter and M. J. Booth, “Adaptive optics in laser processing,” Light: Sci. Appl. 8(1), 110 (2019).
    [19] G.-L. Roth, S. Rung, C. Esen, and R. Hellmann, “Microchannels inside bulk PMMA generated by femtosecond laser using adaptive beam shaping,” Opt. Express 28(4), 5801–5811 (2020).
    [20] Z. Qin, S. He, C. Yang, J. S.-Y. Yung, C. Chen, C. K.-S. Leung, K. Liu, and J. Y. Qu, “Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo,” Light Sci. Appl. 9, 79 (2020).
    [21] L. Kong and M. Cui, “In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique,” Opt. Express 23(5), 6145–6150 (2015).
    [22] C. Rodríguez and N. Ji, “Adaptive optical microscopy for neurobiology,” Curr. Opin. Neurobiol. 50, 83–91 (2018).
    [23] Y. Wang, H. Xu, D. Li, R. Wang, C. Jin, X. Yin, S. Gao, Q. Mu, L. Xuan, and Z. Cao, “Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence,” Sci. Rep. 8, 1124 (2018).
    [24] M. Negro, M. Quintavalla, J. Mocci, A. G. Ciriolo, M. Devetta, R. Muradore, S. Stagira, C. Vozzi, and S. Bonora, “Fast stabilization of a high-energy ultrafast OPA with adaptive lenses,” Sci. Rep. 8, 4–9 (2018).
    [25] B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refr. Surg. 17, S573–S577 (2001).
    [26] M. Aftab, H. Choi, R. G. Liang, and D. W. Kim, “Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations,” Opt. Express 26(26), 34428–34441 (2018).
    [27] H. Shinto, Y. Saita, and T. Nomura, “Shack–Hartmann wavefront sensor with large dynamic range by adaptive spot search method,” Appl. Opt. 55(20), 5413–5418 (2016).
    [28] G. D. Love, J. V. Major, and A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19(15), 1170–1172 (1994).
    [29] G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36(7), 1517–1524 (1997).
    [30] G. V. Vdovin and, P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34(16), 2968–2972 (1995).
    [31] L. Zhu, P. Sun, D. Bartsch, W. R. Freeman, Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38(1), 168–176 (1999).
    [32] L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, “Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror,” App. Opt. 38(28), 6019–6026 (1999).
    [33] S. Bonora, Y. Jian, P. Zhang, A. Zam, E. N. Pugh, R. J. Zawadzki, and M. V. Sarunic, “Wavefront correction and high-resolution in vivo oct imaging with an objective integrated multi-actuator adaptive lens,” Opt. Express 23(17), 21931–21941 (2015).
    [34] J. M. Bueno, M. Skorsetz, S. Bonora, and P. Artal, “Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens,” Opt. Express 26(11), 14278–14287 (2018).
    [35] O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25(1), 52–54 (2000).
    [36] S. Chamot and C. Dainty, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14(2), 518–526 (2006).
    [37] C.-Y. Chang, B.-T. Ke, H.-W. Su, W.-C. Yen, and S.-J. Chen, “Easily implementable field programmable gate array-based adaptive optics system with state-space multichannel control,” Rev. Sci. Instrum. 84(9), 095112 (2013).
    [38] A. V. Kudryashov, A. L. Rukosuev, A. N. Nikitin, I. V. Galaktionov, and J. V. Sheldakova, “Real-time 1.5 kHz adaptive optical system to correct for atmospheric turbulence,” Opt. Express 28(25), 37546–37552 (2020).
    [39] W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. A 70(8), 998–1006 (1980).
    [40] G.-M. Dai, “Modal wave-front reconstruction with Zernike polynomials and Karhunen—Loève functions,” J. Opt. Soc. Am. 13(6), 1218–1225 (1996).
    [41] AMATEUR TELESCOPE OPTICS:https://www.telescope-optics.net/zernike_aberrations.htm#ahead
    [42] D. R. Neal, J. Copland, and D. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
    [43] V. Akondi, and A. Dubra, ”Shack-Hartmann wavefront sensor optical dynamic range,” Opt. Express 29(6), 8417–8429 (2021).
    [44] NI PCIe-1473R User Guide and Specifications:https://www.ni.com/pdf/manuals/373221b.pdf
    [45] Basler ace and beat:CameraLink information for frame grabber designers:https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca2040-180km/
    [46] Boston Micromachines:http://bostonmicromachines.com
    [47] Active Optical Systems (AOS)的連續式薄膜DM規格表:https://aos-llc.com/membrane-dms/
    [48] DAC121S101:https://www.ti.com/lit/ds/symlink/dac121s101.pdf
    [49] Prof. D. Rowell, Signal Processing: Continuous and Discrete:https://ocw.mit.edu/courses/mechanical-engineering/2-161-signal-processing-continuous-and-discrete-fall-2008/lecture-notes/
    [50] F. L. Lian, Design of Real-Time Control Systems:http://cc.ee.ntu.edu.tw/~fengli/Teaching/RTCS/

    下載圖示 校內:2023-07-19公開
    校外:2023-07-19公開
    QR CODE