| 研究生: |
陳進福 Chen, Chin-Fu |
|---|---|
| 論文名稱: |
低電壓操作有機互補式反相器之電特性研究 Low-voltage operated organic complementary inverters |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 高介電常數氧化物 、有機薄膜電晶體 、有機互補式反相器 |
| 外文關鍵詞: | high-k metal oxide, organic thin film transistors, organic complementary inverters |
| 相關次數: | 點閱:65 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為以氧電漿製作高介電常數氧化鋁介電層,並以不同高分子溶液以旋轉塗佈製程製作介電修飾層,將其應用在互補式反相器並探討其對元件電特性之影響。
在氧化鋁薄膜特性方面,利用掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)及化學分析電子光譜儀(ESCA)對其厚度、表面形貌、元素組成進行分析,最後應用在以PTCDI-C13H27為主動層之電晶體元件並驗證其對電性的影響。互補式反相器部分則由前述所得之最佳製程參數製作成互補式反相器並探討其在不同介電修飾層及不同濃度介電修飾層上對元件特性之影響。
首先,在掃描式電子顯微鏡及原子力顯微鏡分析部分,可知氧電漿在對鋁金屬表面進行氧化的同時也會產生些微蝕刻的效應,且所得之氧化鋁表面粗糙度約為5 nm,而在化學分析電子光譜儀分析部分,可知在氧電漿製程中通以6 sccm之氧氣通量時,表面氧原子與鋁原子的數目比最為接近氧化鋁的原子比例,在單型電晶體的電性表現上也會得到最大的輸出電流值。
再者,在不同修飾層對於互補式反相器的比較上,以C-PVP作為元件介電修飾層不論在訊號增益大小及切換電壓的位置上,都較以固含量3.6 %的PI-1溶液所製成的互補式反相器元件佳。最後,稀釋PI-1固含量可以在固含量為1.8 %的PI-1溶液所製成之互補式反相器上得到最接近理想的切換電壓值(誤差率1 %)、大於40的訊號增益及相對匹配的雜訊容限,在連續操作穩定性的分析部分,以3.6 %固含量PI-1所製成之互補式反相器在輸出電壓值的變化上則較其他濃度穩定。綜合以上,本論文成功以簡易製程實現低電壓操作互補式反相器並具有接近理想的切換電壓、高的電壓增益、匹配的雜訊容限及穩定的連續操作。
Organic thin film transistors (OTFTs) could be a promising candidate for the application in the future portable electronic products featuring low-voltage operation and eco-friendly. In this study, we demonstrated OTFTs with a polymer-modified high-k AlOx thin film as the dielectric through facile process. The AlO¬x thin film was prepared by oxygen plasma treatment, and with oxygen flux of 6 sccm during oxygen plasma treatment generates the best quality of AlOx thin film for OTFT applications. Furthermore, OTFTs modified by polyimide (PI) solution with different solid content in 1-Methyl-2-pyrrolidone (NMP) are investigated. The n-type and p-type OTFTs modified by PI solution of 1.8 % solid content lead to perfectly matched threshold voltages, comparable drain currents and high on/off ratios at the operation voltage of 3 V. Consequently, the complementary inverter assembled with those OTFTs obtains an ideal switching voltage, high noise margins, and a high signal gain by 40.
[1] E. Fortunato, “Oxide Semiconductor Thin-Film Transistors: A Review
of Recent Advances”, Adv. Mater., 24, 2945, 2012.
[2] Juan L. A. Chilla, Hailong Zhou, “Blue and green optically pumped
semiconductor lasers for display”, Proceedings of SPIE, 5740, 41, 2005.
[3] F. A. Kish, F. M. Steranka, D. C. DeFevere, “Very high‐efficiency semiconductor wafer‐bonded transparent‐substrate (AlxGa1−x)0.5In0.5P/GaP light‐emitting diodes”, Appl. Phys. Lett., 64, 2839, 1994.
[4] Nikolay Zheludev, “The life and times of the LED — a 100-year history”, Nature Photonics, 1, 189, 2007.
[5] J. Shewchun, “The operation of the semiconductor-insulator-semiconductor solar cell: Experiment, J. Appl. Phys., 50, 4, 1979.
[6] A. V. Shah, “Thin‐film silicon solar cell technology”, Prog. Photovolt: Res. Appl., 12, 113, 2004.
[7] D. F. Barbe, C. R. Westgate, “Surface state parameters of metal-free phthalocyanine single crystals”, J. Phys. Chem. Solids, 31, 2679, 1970.
[8] H. Koezuka, A. Tsumura, T. Ando, Synth, “Field-effect transistor with polythiophene thin film”, Synth. Met., 18, 699, 1987.
[9] G. Horowitz, “Organic field-effect transistors”, Adv. Mater., 10, 365, 1998.
[10] Wei-Yang Chou, Bo-Liang Yeh, Horng-Long Cheng, “Organic complementary inverters with polyimide films as the surface modification of dielectrics”, Organic Electronics, 10, 1001, 2009.
[11] Congyan Lu, Zhuoyu Ji, Guangwei Xu, “Progress in flexible organic thin-film transistors and integrated circuits”, Sci. Bull., 61, 1081, 2016.
[12] Yoshihide Fujisaki, “Transparent Nanopaper-Based Flexible Organic Thin-Film Transistor Array”, Adv. Funct. Mater., 24, 1657, 2014.
[13] Veaceslav Coropceanu, “Charge Transport in Organic Semiconductors”, Chem. Rev., 107, 926, 2007.
[14] Seungjun Chung, Seul Ong Kim, Soon-Ki Kwon, “All-Inkjet-Printed Organic Thin-Film Transistor Inverter on Flexible Plastic Substrate”, IEEE Electron Device Lett., 32, 8, 2011.
[15] Sooji Nam, Yong Jin Jeong, Jaemin Jung, “Direct printing of soluble acene crystal stripes by a programmed dip-coating process for organic field-effect transistor applications”, J. Mater. Chem. C, 6, 799, 2018.
[16] Yongbo Yuan, Gaurav Giri, Alexander L. Ayzner, “Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method”, Nature Communications, 5, 3005, 2014.
[17] A. Chasin, V. Volskiy, M. Libois, K. Myny, M. Nag, M. Rockele,
G.A.E. Vandenbosch, J. Genoe, G. Gielen, P. Heremans, “An integrated a-IGZOUHF energy harvester for passive RFID tags”, IEEE Trans. Electr. Dev. 61, 3289, 2014.
[18] N.K. Elumalai, A. Uddin, “Open circuit voltage of organic solar cells: an in-depth review”, Energy Environ. Sci., 9, 391, 2016.
[19] N.K. Elumalai, M.A. Mahmud, D. Wang, A. Uddin, “Perovskite solar cells: progress and advancements”, Energies, 9, 861, 2016.
[20] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science, 347, 522, 2015.
[21] Ute Zschieschang, Vera Patricia Bader, “Below-one-volt organic thin-film transistors with large on/off current ratios”, Organic Electronics, 49, 179, 2017.
[22] C. Liu, E.F. Chor, L.S. Tan, “Investigations of HfO2∕AlGaN∕GaN metal-oxide-semiconductor high electron mobility transistors”, Appl. Phys. Lett., 88, 173504, 2006.
[23] X.H. Zhang, S.P. Tiwari, B. Kippelen, “Pentacene organic field-effect transistors with polymeric dielectric interfaces: Performance and stability”, Org. Electron., 10, 1133, 2009.
[24] R. Chen, W. Zhou, M. Zhang, H.S. Kwok, “High performance self-aligned top-gate ZnO thin film transistors using sputtered Al2O3 gate dielectric”, Thin Solid Films, 520, 6681, 2012.
[25] C. R. Newman, C. D. Frisbie, Demetrio A. da Silva Filho, Jean-Luc Bredas, P. C. Ewbank, Kent R. Mann, “Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors”, Chem. Mater., 16, 4436, 2004.
[26] Shuhei Tatemichi, Musubu Ichikawa, Toshiki Koyama, “High mobility -type thin-film transistors based on N, N’ ditridecyl perylene diimide
with thermal treatments”, Appl. Phys. Lett., 89, 112108, 2006.
[27] Masatoshi Kitamura, “Low-voltage-operating complementary inverters with C60 and pentacene transistors on glass substrates”, Appl. Phys. Lett., 91, 53505, 2007.
[28] 林益生, “以烷基駢苯衍生物作為主動層之有機薄膜電晶體”, 國立成功大學碩士論文, 2008.
[29] Shuhei Tatemichi, Musubu Ichikawa, “Low-voltage, high-gain,
and high-mobility organic complementary inverters based on N,N’-ditridecyl-3,4,9,10-perylenetetracarboxylic diimide and pentacene”, phys. stat. sol. (RRL) 2, 2, 47, 2008
[30] K.C. Smith, A.S. Sedra, Microelectronic Circuit, 4nd ed., Oxford, New York, 1998, p. 428.
校內:2024-08-06公開