簡易檢索 / 詳目顯示

研究生: 簡以超
Chien, I-Chao
論文名稱: 視覺導航演算法開發與模擬
Visual Navigation Algorithm Development and Simulation
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 55
中文關鍵詞: SIFT演算法快速角點視覺導航
外文關鍵詞: SIFT, Fast Corner, Visual Navigation
相關次數: 點閱:97下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,無人旋翼機已被廣泛的應用於軍事或民間商業任務。因無人旋翼機能夠執行較複雜之任務,如搜救、未知環境之監測與勘查,重點建築與道路之鑑別等。本文之研究目標在於建立一個影像導航系統,使無人旋翼機僅使用攝影機的情況下進行準確導航。由於此系統於開發期間具備大量不確定因素,可能導致系統開發延宕,其中包含無人旋翼機的控制。因此,本文的實驗首先排除無人飛行器,將系統置於實驗之雙軸軸控平台進行測試,模擬無人飛行器於空中定姿態的飛行狀況。本系統經實驗證實,僅需搭配攝影機以導航所需之樣版地圖,毋須搭配常見之感測器諸如:GPS、羅盤,或者慣性導航儀…等,即足以執行導航任務。

    Recent years , UAV(unmanned aerial vehicle) has been widely applied in military and civil missions. UAV can enforce complex missions like rescuing , unknown environment surveying , building and road recognition. The goal of this study is to establish a visual navigation system . The system provides UAV the ability navigates accurately only with visual information. But the process of development may postponed by unknown fact during developing. In these facts, the control of UAV is a possible reason . Therefore, the experiments in this study the system primarily and simulates the situation of UAV flying with firm pose in dual-axis-experiment platform. The system developed in this study only need a camera and model map which is necessary for navigation , the result proofed the system is work well, without other common sensors like GPS ,Compass, inertial navigation system (INS).

    簽名頁 I 中文摘要 II ABSTRACT III 誌謝 IV 目錄 V 第一章 前言 1 1.1研究動機與目的 1 1.2文獻回顧 1 1.2.1.SIFT簡述 1 1.2.2光流簡述 2 1.2.3即時定位與地圖構建(SLAM) 3 1.3 研究方法 4 1.4 論文架構 5 第二章 SIFT演算法 6 2.1 背景知識 6 2.2 SIFT匹配流程 7 2.2.1演算法流程 7 2.2.2 SIFT特徵擷取 8 (a) 尺度空間中極值求取 8 (b) 高斯差分影像極值 11 2.2.3特徵點過濾 11 (a)特徵點位置確定 11 (b)過濾低比對度特徵點 12 (c)過濾邊緣角點雜訊 12 2.2.4 特徵描述子 14 (a)特徵梯度方向確定 14 (b) 建立描述子 15 2.2.5 特徵匹配方法 16 2.2.6 仿射關係 16 第三章 光流法 18 3.1 L-K法初始條件與基本原理 18 3.2金字塔光流法演算法 20 3.3特徵擷取 21 3.3.1 SUSAN角點檢測法原理 22 3.3.2 FAST角點檢測法原理 23 第四章 實驗方法 26 4.1實驗器材 26 4.2運動控制方法 29 4.3實驗介面介紹 29 4.4實驗流程 33 4.5實驗演算法介紹 34 4.5.1樣板地圖取得 34 4.5.2位置識別結果判定 34 4.5.3比例尺與方位參數取得 38 4.5.4路徑規劃與建立次目標點 39 4.5.5次目標點資訊更新 40 4.5.6光流偵測 41 第五章 實驗結果與討論 45 5.1章節架構 45 5.2高空導航模擬 46 5.3低空導航模擬 49 5.4結果討論 52 5.5未來展望 53 參考文獻: 54

    [1] D. G. Lowe, “Object recognition from local scale-invariant features” Proceedings of the International Conference on Computer Vision 2.pp. 1150–1157,1999.
    [2] D. G. Lowe, “ Distinctive Image Features from Scale-Invariant Keypoints” International Journal of Computer Vision 60(2).pp. 91–110, 2004.
    [3] B.D. Lucas and T. Kanade, “ An iterative image registration technique with an application to stereo vision” DARPA Image Understanding Workshop.pp.121-130,1981.
    [4] B.K.P. Horn and B.G. Schunk, “ Determing optical flow” Artificial Intellignece.Vol 17 .pp. 185-203,1981.
    [5] S .Smith and J. Brady , “SUSAN. SUSAN—A New Approach to Low Level Image Processing” International Journal of Computer Vision 23(1).pp.45–78,1997.
    [6] E. Rosten and T. Drummond, “ Fusing Points and Lines for High
    Performance Tracking” Int l0 IEEE International Conference on Computer Vision. Volume 2.pp. 1508–1515,2005.
    [7] E. Rosten, R. Porter, and T. Drummond, “ Faster and better: A machine learning approach to corner detection” IEEE Trans. Pattern Analysis and Machine Intelligence 32.pp.105– 119, 2010.
    [8] H. Durrant-Whyte and T. Bailey, “ Simultaneous localisation and mapping (SLAM): Part I” IEEE Robot. Autom Mag. vol. 13. pp. 99–110, 2006.
    [9] H.F. Durrant-Whyte, “ Uncertain geometry in robotics” IEEE Trans.Robot Automat., vol. 4. pp. 23–31, 1988.
    [10] R. Smith and P. Cheesman , “ On the representation of spatial uncertainty” Int. J. Robot. Res .pp.56–68, 1987.
    [11] C. G. Rafael and E. W. Richard, “Digital Image Processing Third Edition” Prentice Hall .pp.69-77. 2010.
    [12] P. V. C. Hough, “Methods and means for recogninzing complex pat-terns” U.S. Patent 3-069-654, 1962.
    [13] T. Lindeberg, “Scale-space theory: A basic tool for analysing structures at different scales” J.Appl Stat.21(2).pp.225-270 ,1994.
    [14] R. Hartley and A. Zisserman, “Multiple View Geometry in computer vision” Cambridge University Press. pp. 32–33.2004.
    [15] D. J. Fleet, Y. Weiss, “Optical Flow Estimation” Mathematical Models in Computer Vision:The Handbook.pp.239-258, 2005.
    [16] J.Y. Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature Tracker” Cambridge University Press. pp. 32–33.2000.
    [17] L. Kitchen and A. Rosenfeld, “Analysis of Gray Level Corner Detection” Description of the algorithm Processing. Int. Journal of Compuer Vision 23(1) .pp.45-78, 1997.   
    [18] C. Harris and M. Stephens, “A Combined Corner and Edge Detector Manchester” Proceedings of the 4th Alvey Vision Conference.pp. 147-151, 1988.
    [19] J. Shi and C. Tomasi, “Good Features to Track” IEEE Conference on Computer Vision and Pattern Recognition. pp. 593-600, 1994.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE