簡易檢索 / 詳目顯示

研究生: 翟挺翔
Chai, Ting-Hsiang
論文名稱: 流體循環系統濾心阻塞與清洗策略研究:以半導體酸槽製程為應用標的
A Study on Monitoring and Cleaning Strategies of Filtration-Film Clogging in Fluid Circulation System: for Acid-Tank Application in Semiconductor Manufacturing
指導教授: 楊天祥
Yang, Tian-Shiang
共同指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 110
中文關鍵詞: 過濾膜阻塞機制流阻監控濾心反洗晶圓清潔
外文關鍵詞: Filtration film, Clogging mechanism identification, Flow resistance monitoring, Reverse-flow cleaning, Wafer cleaning
相關次數: 點閱:86下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體製程中,晶圓清洗為重要的一環,透過酸槽大批清洗的技術,現今仍被廣泛地使用。酸槽系統透過內部濾心過濾不斷循環的化學液來促進晶圓洗淨的效率。而在循環系統中的濾心更扮演著重要的角色,其內部的精密濾心設計專門用來防止從晶圓上洗下來的碎屑再次流入酸槽中。濾心於使用一定時間後,阻塞使流阻上升,因此必須定期更換才能維持酸槽的潔淨。本研究希望發展一套能簡易預測濾心壽命的工具,幫助監控並隨時掌握濾心狀況,甚至能利用反向循環清洗來延長其使用期限,相信在工業應用上將可有效降低酸槽清洗晶圓的成本。本研究將從了解阻塞理論開始,並了解半導體業界所使用之濾心內部構造等相關資訊,再透過掃描式電子顯微鏡(scanning electron microscope;SEM) 檢視濾材,選用最佳實驗雜質粒徑尺寸以符合業界現況。透過流阻的概念,我們可以快速了解濾心當前阻塞情況,並將此概念作為實驗的設計與衡量標準。同時,透過實驗累積大量數據,了解濾心阻塞的關鍵因素,再將實驗數據套入阻塞理論中,建立分析模型。最後希望在此研究下能發展一套簡易工具來判斷濾心剩餘使用壽命,最終目標則為延長濾心使用期限,期望開發出反洗系統於機台保養的過程中啟動,使得機台重新開始生產時,濾心又回復到最佳的效率。

    In semiconductor manufacturing processes, acid tanks for wafer cleaning employ a circulation system to enhance cleaning effectiveness. Meanwhile, a filtration film is deployed in the circulation system to intercept debris. The filtration film eventually becomes clogged and thus fails. Clearly, it is desirable to have a good estimate of the remaining lifetime of the filter in use, and to have effective strategies for cleaning the filter during periodic maintenance to prolong its lifetime. In this work, a scaled-down liquid filtration apparatus is constructed for monitoring the filter’s flow-resistance increase with time, and for testing the effectiveness of various filtration-film cleaning strategies. It is found that filtration film clogging generally is caused by “complete blocking” first, and then by “cake filtration”. Also, reverse-flow cleaning appears to be effective for reducing cake filtration, but much less so for complete blocking. Moreover, when the flow rate of the cleaning fluid is periodically varied (by use of an electromagnetically actuated valve), the efficiency of filtration film cleaning can be significantly enhanced, and the enhancement becomes profound as the frequency of flow rate oscillation increases.

    中英文摘要 I 致謝 XVI 目錄 XVII 圖目錄 XXI 表目錄 XXVI 縮寫表 XXVII 符號說明 XXVIII 一、 緒論 1 1.1 前言 1 1.2 研究動機 4 1.3 研究架構 6 1.4 本文架構 8 二、 過濾阻塞模型與對應流阻公式 9 2.1 過濾基本原理 9 2.2 過濾阻塞模型 11 2.3 PTFE濾心特性 17 三、 濾材選用及檢視 19 3.1 本章介紹 19 3.2 半導體製造用精密濾心規格 20 3.3 半導體製造用濾材SEM檢視 24 3.4 實驗用濾材SEM檢視 30 3.5 實驗用碳化矽分析 33 3.6 本章結論 35 四、 實驗系統建立與實驗流程 37 4.1 本章介紹 37 4.2 泵浦循環系統 39 4.2.1 壓力感測器 41 4.2.2 超音波流量計與流量顯示器 43 4.2.3 電磁加熱攪拌器 45 4.2.4 離心泵浦 46 4.3 過濾模組 47 4.4 反洗次系統 48 4.5 資料擷取次系統 49 4.6 過濾阻塞及反洗實驗流程 51 4.6.1 實驗前準備 53 4.6.2 循環阻塞實驗 55 4.6.3 反洗實驗 56 4.7 本章結論 57 五、 過濾阻塞實驗結果與討論 59 5.1 本章介紹 59 5.2 阻塞實驗 60 5.2.1 過濾膜之流阻變化 60 5.2.2 過濾阻塞常數與機制 69 5.2.3 阻塞機制轉換點 76 5.3 反洗實驗 80 5.3.1 反洗模式比較 80 5.3.2 反洗效果分析 86 5.4 實驗總結 89 六、 工程應用討論 91 6.1 本章介紹 91 6.2 實驗與產線之差異 92 6.3 濾心壽命預測 93 6.4 濾心壽命延長 100 七、 結論與未來工作 103 7.1 結論 103 7.1.1 過濾阻塞及壽命預測 103 7.1.2 反洗延長壽命 104 7.2 本文貢獻 105 7.3 未來工作及建議 106 參考文獻 107

    [1] 張和裕,半導體晶圓廠的清潔劑,三聯技術雜誌,2009
    [2] 無塵室機台環境,Retrieved from http://news.ltn.com.tw/photo/business/paper/ 647140
    [3] 酸槽清洗機台示意圖,Retrieved from 2015 Industry-university cooperative research project proposal
    [4] E. Iritani, A review on modeling of pore-blocking behaviors of membranes during pressurized membrane filtration, Drying Technology, Vol. 31, pp. 146–162, 2013
    [5] Principles of filtration, Pall Corporation, Retrieved on 22 October 2015 from https://www.pall.com/pdfs/Fuels-and-Chemicals/WER_5300B.pdf
    [6] P.H. Hermans, H.L. Bredée, Principles of the mathematical treatment of constant pressure filtration, Journal of the Chemical Society, Vol. 55, pp. 1–4, 1936
    [7] H.P. Grace, Structure and performance of filter media. I. The internal structure of filter media, AIChE Journal, Vol. 2, pp. 307–315, 1956
    [8] J. Hermia, Constant pressure blocking filtration laws. Application to power-law non-Newtonian fluids, Transactions of the Institution of Chemical Engineers, Vol. 60, pp. 183–187, 1982
    [9] M. Hlavacek, F. Bouchet, Constant flowrate blocking laws and an example of their application to dead end microfiltration of protein solutions, Journal of Membrane Science, Vol. 82, pp. 285–297, 1993
    [10] E.M. Tracey, R.H. Davis, Protein fouling of track-etched polycarbonate microfiltration membranes, Journal of Colloid and Interface Science, Vol. 167, pp. 104–116, 1994
    [11] W.R. Bowen, J.I. Calvo, A. Hernandez, Steps of membrane blocking in flux decline during protein microfiltration, Journal of Membrane Science, Vol. 101, pp. 153–165, 1995
    [12] C.C. Ho, A.L. Zydney, A combined pore blockage and cake filtration model for protein fouling during microfiltration, Journal of Colloid and Interface Science, Vol. 232, pp. 389–399, 2000
    [13] G. Bolton, D. LaCasse, R. Kuriyel, Combined models of membrane fouling: development and application to microfiltration and ultrafiltration of biological fluids, Journal of Membrane Science, Vol. 277, pp. 75–84, 2006
    [14] A. Grenier, M. Meireles, P. Aimar, P. Carvin, Analysing flux decline in dead-end filtration, Chemical Engineering Research and Design, Vol. 86, pp. 1281–1293, 2008
    [15] A. Alhadidi, A.J.B. Kemperman, J.C. Schippers, M. Wessling, W.G.J. van der Meer, The influence of membrane properties on the silt density index, Journal of Membrane Science, Vol. 384, pp. 205–218, 2011
    [16] D.A. White, The interpretation of the SDI for water solids content using the filtration equation, Process Safety and Environmental Protection, Vol. 74, pp. 137–140, 1996
    [17] K. Matsumoto, M. Furuichi, K. Nakamura, T. Nittami, Evaluation of water quality by the modified SDI in the membrane filtration process, Journal of Membrane Science, Vol. 34, pp. 94–103, 2009
    [18] A. Alhadidi, B. Blankert, A.J.B. Kemperman, J.C. Schippers, M. Wessling, W.G.J. van der Meer, Effect of testing conditions and filtration mechanisms on SDI, Journal of Membrane Science, Vol. 381, pp. 142–151, 2011
    [19] J.C. Schippers, J.H. Hanemaayer, C.A. Smolders, A. Kostense, Predicting flux decline of reverse osmosis membranes, Desalination, Vol. 38, pp. 339–348, 1981.
    [20] B. Keskinler, E. Yildiz, E. Erhan, M. Dogru, Y.K. Bayhan, G. Akay, Crossflow microfiltration of low concentration-nonliving yeast suspensions, Journal of Membrane Science, Vol. 233, pp. 59–69, 2004
    [21] T. Srisukphun, C. Chiemchaisri, K. Yamamoto, Modeling of RO flux decline in textile wastewater reclamation plants using variable fouling index, Separation Science and Technology, Vol. 44, pp. 1704–1721, 2009
    [22] M. Hashimoto, S. Tsuzuki, T. Numaguchi, N. Miyazaki, Critical operating condition to prevent low flow trouble of filters for wet cleaning process, International Symposium on Semiconductor Manufacturing Conference, 2011
    [23] D. Capitanio, K. Mutoh, Prevention of microbubbles during filtration and particle counting of high purity chemicals in the semiconductor industry, Pall Corporation, Retrieved on 24 January 2016 from https://www.pall.com/en/main/industrial-manufacturing/Literature-Library-Details.page.html?id=2647
    [24] UCUF-K_TG-F1020 manual, Tokyo Keiso, Retrieved on 10 March 2016 from https://www.tokyokeiso.co.jp/products/download/tg/UCUF-K_TG-F1020.pdf
    [25] QuickChange® ATE Filters, Entegris, Retrieved on 28 December 2015 from
    https://www.entegris.com/nihon/resources/images/21185.pdf

    下載圖示 校內:2020-06-21公開
    校外:2020-06-21公開
    QR CODE