| 研究生: |
楊承桓 Yang, Cheng-Huan |
|---|---|
| 論文名稱: |
利用位移函數分析多層含水層點載重與點抽水引起之三維壓密問題 Analyzing Three-dimensional Consolidation Problems of Multi-aquifers due to Point Force and Point Sink by Displacement Function |
| 指導教授: |
林育芸
Lin, Yu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 壓密問題 、點載重 、點抽水 、多層含水層 、位移函數方法 |
| 外文關鍵詞: | Consolidation problems, Point force, Point sink, Multi-aquifer, Displacement function method |
| 相關次數: | 點閱:173 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用位移函數方法(Displacement function method)來分析單層與多層含水層系統因點載重與點抽水作用引起之三維壓密問題。此方法結合位移函數與拉普拉斯-傅立葉轉換求解Biot的孔隙彈性理論中的方程式。但在(1)時間極短、(2)土層厚度大或(3)土層間的滲透係數差異大的情形下,通解中的自然對數函數會超出MATLAB程式可計算範圍,而出現數值上的困難;本研究提出相關數值技巧以改進此方法在上述極端情況的使用,並減少計算的時間成本。本文先討論單層土層在不同深度位置受點載重或點抽水下的壓密問題;再考慮土層中含阻水層的情形下,滲透係數改變對於壓密行為的影響。此外,也建立有限元素軸對稱模型來驗證位移函數方法之數值結果的準確度;藉由比較(1)結合本研究數值技巧之位移函數方法與(2)有限元素法,本研究提出之數值技巧能不僅有效地解決數值計算上的困難,也顯出位移函數方法在效率上的優勢。
由本研究結果可知,(1)當點載重或點抽水作用位置越靠近表面時,其導致之最大沉陷量越大,但影響範圍較小;而點抽水影響範圍又較點載重作用下的範圍更廣。(2)無論何種作用力或有無阻水層存在,單一觀測點的水壓皆無法判定該點位移是否達到穩態。因此本文建議在實務應用上,除了針對不同作用的影響調整監測範圍外,同時以有限的水壓觀測值搭配數值分析以完整的評估該區域的沉陷情形。
This thesis used the displacement function method to solve three-dimensional consolidation problems caused by point force or point sink. The displacement functions are the fundamental solutions of Biot’s poroelastic equations in the Laplace-Fourier transformed domain, and are represented by exponential functions. However, at extremely short time, or when soil layer is very thick or when the permeability between soil layers differs significantly, the components in the exponential functions exceed the limit of calculation in MATLAB. Hence, numerical difficulty occurs in these extreme cases. To improve this method and to reduce computational time, we developed several numerical techniques. We solved the consolidation of multi-aquifers cause by point force or point sink applied at different depths. We also discussed the effect of aquitard on the consolidation. Finite element axisymmetric models were carried out to compare with the numerical results calculated by the displacement function method. The comparison show very good agreement between two methods. According to the results, (1) when the location of point force or the point sink is closer to the surface, the maximum settlement is larger, but the range of influence is smaller. Also, the range of influence due to point sink is wider than that due to point force. (2) In general, the pore pressure observed at a single point cannot be used to determine whether the displacement at the same point has reached a steady state.
[1]Terzaghi, K. (1951). Theoretical Soil Mechanics. Chapman and Hell, Limited. ; London.
[2]Jacob, C.E. (1950). Flow of Groundwater. Engineering Hydraulics, ed. H. Rouse. John Wiley & Sons, New York. 321-386.
[3]Theis. C. V. (1938). The Significance and Nature of the Cone of Depression in Groundwater Bodies. Economic Geology, 33(8), 889-902.
[4]蔡東霖. (2001). 大區域地下水超抽導致地層下陷模式之發展與應用. 國立交通大學博士論文.
[5]Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155-164.
[6]Love, A. E. H. (1892). A Treaties on the Mathematical Theory of Elasticity. Cambridge University Press.
[7]McNamee, J. & Gibson, R.E. (1960). Displacement functions and linear transforms applied to diffusion through porous elastic media. The Quarterly Journal of Mechanics and Applied Mathematics, 13(1), 98-111.
[8]McNamee, J. & Gibson, R.E. (1960). Plane strain and axially symmetric problems of the consolidation of a semi-infinite clay stratum. The Quarterly Journal of Mechanics and Applied Mathematics, 13(2), 210-227.
[9]Verruijt, A. (1971). Displacement functions in the theory of consolidation or in thermoelasticity. Journal of Applied Mathematics and Physics, 22(5), 891-898.
[10]Gibson, R.E., Schiffman, R. L., & Pu, S. L. (1970). Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious base. The Quarterly Journal of Mechanics and Applied Mathematics, 23(4), 505-520.
[11]Booker, J. R., & Small, J. C. (1982). Finite layer analysis of consolidation. I. International Journal for Numerical and Analytical Methods in Geomechanics, 6(2), 151-171.
[12]Booker, J. R., & Small, J. C. (1982). Finite layer analysis of consolidation. II. International Journal for Numerical and Analytical Methods in Geomechanics, 6(2), 173-194.
[13]Booker, J. R., & Small, J. C. (1987). A method of computing the consolidation behavior of layered soils using direct numerical inversion of Laplace transforms. International Journal for Numerical and Analytical Methods in Geomechanics, 11(4), 363-380.
[14]Vardoulakis, I., & Harnpattanapanich, T. (1986). Numerical Laplace-Fourier transform inversion technique for layered-soil consolidation problems: I. Fundamental solutions and validation. International Journal for Numerical and Analytical Methods in Geomechanics, 10(4), 347-365.
[15]Harnpattanapanich, T., & Vardoulakis, I. (1987). Numerical Laplace-Fourier transform inversion technique for layered soil consolidation problems; II, Gibson soil layer. International Journal for Numerical and Analytical Methods in Geomechanics, 11(1), 103-112.
[16]Wang, J., & Fang, S. (2001). The state vector solution of axisymmetric Biot’s consolidation problems for multilayered poroelastic media. Mechanics Research Communications, 28(6), 671-677.
[17]Wang, J., & Fang, S. (2003). State space solution of non-axisymmetric Biot consolidation problem for multilayered porous media. International Journal of Engineering Science, 41(15), 1799-1813.
[18]Chen, G. J. (2004). Consolidation of multilayered half space with anisotropic permeability and compressible constituents. International Journal of Solids and Structures, 41(16-17), 4567-4586.
[19]Ai, Z. Y., Yue, Z. Q., Tham, L. G., & Yang, M. (2002). Extended Sneddon and Muki solutions for multilayered elastic materials. International Journal of Engineering Science, 40(13), 1453-1483.
[20]Ai, Z. Y., Cheng, Z. Y., & Han, J. (2008). State space solution to three-dimensional consolidation of multi-layered soils. International Journal of Engineering Science, 46(5), 486-498.
[21]Liang, F., Song, Z., & Jia, Y. (2017). Hydro-mechanical behaviors of the three-dimensional consolidation of multi-layered soils with compressible constituents. Ocean Engineering, 131, 272-281.
[22]林彥呈. (2018). 利用Laplace-Fourier轉換方法分析多含水層表面荷重引起之三維壓密問題, 國立成功大學碩士論文.
[23]Hildebrand, F. B. (1956). Introduction to Numerical Analysis. New York: McGraw-Hill, 323-325.
[24]Stehfest, H. (1970). Algorithm 368: Numerical inversion of Laplace transforms [D5], Communications of the ACM, 13(1), 47-49.
[25]Das, B.M. (2014), Principles of Geotechnical Engineering, 8th SI ed., Brooks/Cole-Thomson Learning Inc. , Pacific Grove, USA.