| 研究生: |
黃上庭 Huang, Shang-Ting |
|---|---|
| 論文名稱: |
整合太陽熱能與合成氣體燃燒之雙熱能混合發電系統的操作最佳化 Operation Optimization of a Hybrid Power System Integrating Solar Radiation and Syngas Combustion Energy |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 204 |
| 中文關鍵詞: | 雙熱能混合發電系統 、聚光型太陽追蹤系統 、合成氣體燃燒 、史特靈引擎 、VSCGM 、多目標最佳化 |
| 外文關鍵詞: | Hybrid power system, Solar dish, Syngas combustion, Stirling engine, VSCGM, Multi-objective optimization |
| 相關次數: | 點閱:58 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文發展一理論模型,用於整合太陽輻射熱和合成氣燃燒的雙熱能混合發電系統。本研究包含詳細的子系統模型,包括雙反射式聚光型太陽追蹤系統、鼓泡式流體化床氣化爐、雙熱源混合能源吸收器、史特靈引擎和發電機。應用反應曲面法來建立史特靈引擎的加熱頭壁面溫度、整體系統效率和電功率輸出的預測模型。通過中心合成設計(CCD)實驗設計和反應曲面法,檢查操作參數(如太陽輻照度、循環水和合成氣的質量流率、史特靈引擎充填壓力和發電機的負載扭矩)對系統的影響。本論文亦探討使用NSGA-II和VSCGM方法進行多目標函數的最佳化,並比較兩者間的最佳化結果和該方法之計算效率。結果顯示,較高的太陽輻照度和合成氣質量流率往往會增加史特靈引擎的加熱頭壁面溫度和電功率輸出,表明這兩個操作參數可以達成相互協調,以保持恆定的功率輸出的目標。水的質量流率可調整史特靈引擎的加熱頭壁面溫度,並最佳化整體系統效率。調整史特靈引擎之充填壓力和發電機的負載扭矩,可以調整整體系統效率和電功率輸出。NSGA-II和VSCGM的最佳解分別為1714.76 W(效率63.7%)和1717.06 W(效率63.66%)。VSCGM在計算速度上顯示了顯著優勢,表明其在實時優化應用中的潛力。
This dissertation presents a theoretical model of a hybrid power system that integrates solar radiation and syngas combustion. The study incorporates detailed models of subsystems, including a dual-reflection solar dish, a fluidized bed gasifier, a hybrid energy receiver, a Stirling engine, and a generator. Response Surface Methodology (RSM) is applied to build prediction models of the heater wall temperature of the Stirling engine, overall system efficiency and electrical power generation. Using Central Composite Design (CCD) experimental design and RSM, the interplay of operating variables such as solar irradiance, mass flow rates of water and syngas, charged pressure, and load torque is examined for their impact on system performance. The dissertation further explores multi-objective optimization using NSGA-II and VSCGM methods, comparing their optimal results and computational efficiencies. The results show that higher solar irradiance and mass flow rate of syngas tend to increase both the heater wall temperature of the Stirling engine and electrical power, indicating that these two variables could coordinate with each other to maintain a constant power output. The mass flow rate of water offers the adjustment of the heater wall temperature of the Stirling engine and the optimization of the overall system efficiency. Adjusting the charged pressure and load torque provide a mechanism for finely tuning the overall system efficiency and electrical power. The optimal solutions for NSGA-II and VSCGM were 1714.76 W at 63.7% efficiency and 1717.06 W at 63.66% efficiency, respectively. VSCGM demonstrated a significant advantage in computational speed, suggesting its potential for real-time optimization applications.
1. U. R. Singh and A. Kumar, "Review on solar Stirling engine: Development and performance," Thermal Science and Engineering Progress, vol. 8, pp. 244-256, 2018.
2. C. I. Hussain, B. Norton, and A. Duffy, "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, vol. 68, pp. 1115-1129, 2017.
3. R. K. Jha, "Enhancing Climate Adaptation Through Hybrid Energy Systems," Journal of Electrical Engineering, vol. 5, no. 3, pp. 310-329, 2023.
4. R. K. Akikur, R. Saidur, H. Ping, and K. R. Ullah, "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable & Sustainable Energy Reviews, vol. 27, pp. 738-752, 2013.
5. S. K. Natarajan, F. Kamran, N. Ragavan, R. Rajesh, R. K. Jena, and S. K. Suraparaju, "Analysis of PEM hydrogen fuel cell and solar PV cell hybrid model," Materials Today: Proceedings, vol. 17, pp. 246-253, 2019.
6. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications," International Journal of Hydrogen Energy, vol. 35, no. 17, pp. 9349-9384, Sept. 2010.
7. M. A. Arefin, M. T. Islam, F. Rashid, K. Mostakim, N. I. Masuk, and M. H. I. Islam, "A comprehensive review of nuclear-renewable hybrid energy systems: status, operation, configuration, benefit, and feasibility," Frontiers in Sustainable Cities, vol. 3, art. no. 723910, 2021.
8. G. Walker, R. Fauvel, R. Gustafson, and J. Van Bentham, "Stirling engine heat pumps," International Journal of Refrigeration, vol. 5, no. 2, pp. 91-97, 1982.
9. R. Stirling, "Stirling air engine and the heat regenerator," U.S. Patent 4081, 1816.
10. I. Urieli and D. M. Berchowitz, Stirling Cycle Engine Analysis, Adam Hilger Ltd, Bristol, 1984.
11. C. M. Hargreaves, The Phillips Stirling Engine, Elsevier, New York, NY, USA, 1991.
12. N. K. G. Rosenqvist, S. G. Gummesson, and S. G. K. Lundholm, "The development of a 150 kW (200 HP) Stirling engine for medium duty automotive application—A status report," SAE Transactions, 1977.
13. A. J. Organ, Thermodynamics and Gas Dynamics of the Stirling Cycle Machine. New York, U.S.A.: Cambridge University Press, 1992.
14. A. J. Organ, The Regenerator and the Stirling Engine. United Kingdom: Mechanical Engineering Publications, 1997.
15. N. Parlak, A. Wagner, M. Elsner, and H. Soyhan, "Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions," Renewable Energy, vol. 34, pp. 266-273, 2009.
16. C. H. Cheng, H. Yang, and L. Keong, "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, vol. 59, pp. 590-599, 2013.
17. M. Ni, B. Shi, G. Xiao, H. Peng, U. Sultan, S. Wang, Z.-y. Luo, and K. Cen, "Improved Simple Analytical Model and experimental study of a 100W β-type Stirling engine," Applied Energy, vol. 169, pp. 768-787, 2016.
18. G. Xiao, U. Sultan, M. Ni, H. Peng, Z. Xin, W. Shulin, and Z.-y. Luo, "Design optimization with computational fluid dynamic analysis of β-type Stirling engine," Applied Thermal Engineering, vol. 113, pp. 87-102, 2017.
19. D. Erol, H. Yaman, and B. Doğan, "A review development of rhombic drive mechanism used in the Stirling engines," Renewable & Sustainable Energy Reviews, vol. 78, pp. 1044-1067, 2017.
20. D. Erol and S. Çalışkan, "Comparative study on the performance of different drive mechanisms used in a beta type Stirling engine through thermodynamic analysis," International Journal of Automotive Engineering and Technologies, 2019.
21. S. Alfarawi, "Thermodynamic analysis of rhombic‐driven and crank‐driven beta‐type Stirling engines," International Journal of Energy Research, vol. 44, pp. 5596-5608, 2020.
22. L. Zhang, K. Han, Y. Wang, Y. Zhu, S. Zhong, and G. Zhong, "A bibliometric analysis of Stirling engine and in-depth review of its application for energy supply systems," Energy Reviews, vol. 100048, 2023.
23. A. Hafez, A. Soliman, K. El-Metwally, and I. Ismail, "Solar parabolic dish Stirling engine system design, simulation, and thermal analysis," Energy Conversion and Management, vol. 126, pp. 60-75, 2016.
24. S. Alexopoulos, "Solar Thermal Energy," in Solar Energy Engineering, S. A. Kalogirou, Ed. Springer, 2022.
25. M. Zayed, J. Zhao, A. Elsheikh, W. Li, S. Sadek, and M. M. Aboelmaaref, "A comprehensive review on Dish/Stirling concentrated solar power systems: Design, optical and geometrical analyses, thermal performance assessment, and applications," Journal of Cleaner Production, vol. 268, 2020.
26. J. J. Droher, S. E. Squier, and S. Shinnamon, "Performance of the Vanguard Solar Dish-Stirling Engine Module," Energy Technology Engineering Center, Canoga Park, California, Tech. Rep. EPRI AP-4608, 1986.
27. C. W. Lopez and K. W. Stone, "Performance of the Southern California Edison Company Stirling Dish," Sandia National Lab., Albuquerque, NM, Southern California Edison Co., Rosemead, CA, and Mako Enterprises, Huntington Beach, CA, Tech. Rep. SAND-93-7098, 1993
28. V. C. Truscello, "The parabolic concentrating collector: a tutorial," Jet Propulsion Laboratory, Tech. Rep. JPL Pub. 79-7, 1979.
29. A. C. Ferreira, M. L. Nunes, J. C. Teixeira, L. A. Martins, and S. F. Teixeira, "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, vol. 111, pp. 1-17, 2016.
30. Y. Kadri and H. H. Abdallah, "Performance evaluation of a stand-alone solar dish Stirling system for power generation suitable for off-grid rural electrification," Energy Conversion and Management, vol. 129, pp. 140-156, 2016.
31. G. Barreto and P. Canhoto, "Modelling of a Stirling engine with parabolic dish for thermal to electric conversion of solar energy," Energy Conversion and Management, vol. 132, pp. 119-135, 2017.
32. A. Buscemi, V. Lo Brano, C. Chiaruzzi, G. Ciulla, and C. Kalogeri, "A validated energy model of a solar dish-Stirling system considering the cleanliness of mirrors," Applied Energy, 2020.
33. H. Allouhi, A. Allouhi, M. S. Buker, S. Zafar, and A. Jamil, "Recent advances, challenges, and prospects in solar dish collectors: Designs, applications, and optimization frameworks," Solar Energy Materials and Solar Cells, vol. 241, Art. no. 111743, 2022.
34. F. Miccio, "On the integration between fluidized bed and Stirling engine for micro-generation," Applied Thermal Engineering, vol. 52, pp. 46-53, 2013.
35. E. Cardozo, C. Erlich, A. Malmquist, and L. Alejo, "Integration of a wood pellet burner and a Stirling engine to produce residential heat and power," Applied Thermal Engineering, vol. 73, no. 1, pp. 671-680, 2014.
36. T. Schneider, D. Müller, and J. Karl, "A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power," Renewable & Sustainable Energy Reviews, vol. 134, 2020.
37. M. Rokni, "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, vol. 77, pp. 6-18, 2014.
38. J. Chen, X. Li, Y. Dai, and C.-H. Wang, "Energetic, economic, and environmental assessment of a Stirling engine based gasification CCHP system," Applied Energy, vol. 281, Art. no. 116067, 2021.
39. H. Ding, J. Li, and D. Heydarian, "Energy, exergy, exergoeconomic, and environmental analysis of a new biomass-driven cogeneration system," Sustainable Energy Technologies and Assessments, vol. 45, p. 101044, 2021.
40. A. Skorek-Osikowska, J. Kotowicz, and W. Uchman, "Thermodynamic assessment of the operation of a self-sufficient, biomass based district heating system integrated with a Stirling engine and biomass gasification," Energy, vol. 141, pp. 1764-1778, 2017.
41. H. Solmaz, S. M. S. Ardebili, F. Aksoy, A. Calam, E. Yılmaz, and M. Arslan, "Optimization of the operating conditions of a beta-type rhombic drive Stirling engine by using response surface method," Energy, vol. 196, 2020.
42. W. Ye, P. Yang, and Y.-w. Liu, "Multi-objective thermodynamic optimization of a free piston Stirling engine using response surface methodology," Energy Conversion and Management, vol. 171, pp. 1199-1210, 2018.
43. W. Ye, X. Wang, Y.-w. Liu, and J. Chen, "Analysis and prediction of the performance of free-piston Stirling engine using response surface methodology and artificial neural network," Applied Thermal Engineering, vol. 185, 2021.
44. M. H. Ahmadi, H. Sayyaadi, S. Dehghani, and H. Hosseinzade, "Designing a solar powered Stirling heat engine based on multiple criteria: maximized thermal efficiency and power," Energy Conversion and Management, vol. 75, pp. 282-291, 2013.
45. A. C. Ferreira, M. L. Nunes, J. C. Teixeira, L. A. Martins, S. F. Teixeira, and S. A. Nebra, "Design of a solar dish Stirling cogeneration system: application of a multi-objective optimization approach," Applied Thermal Engineering, vol. 123, pp. 646-657, 2017.
46. G. E. C. Caballero, L. S. Mendoza, A. M. Martinez, E. E. Silva, V. R. Melian, O. J. Venturini, and O. A. del Olmo, "Optimization of a Dish Stirling system working with DIR-type receiver using multi-objective techniques," Applied Energy, vol. 204, pp. 271-286, 2017.
47. A. Habibollahzade, E. Gholamian, E. Houshfar, and A. Behzadi, "Multi-objective optimization of biomass-based solid oxide fuel cell integrated with Stirling engine and electrolyzer," Energy Conversion and Management, vol. 171, pp. 1116-1133, 2018.
48. M. E. Zayed, J. Zhao, A. H. Elsheikh, W. Li, and M. Abd Elaziz, "Optimal design parameters and performance optimization of thermodynamically balanced dish/Stirling concentrated solar power system using multi-objective particle swarm optimization," Applied Thermal Engineering, vol. 178, art. no. 115539, 2020.
49. C. H. Cheng and Y. T. Lin, "Optimization of a Stirling engine by variable-step simplified conjugate-gradient method and neural network training algorithm," Energies, vol. 13, no. 19, p. 5164, 2020.
50. C. H. Cheng, T. C. Cheng, Y. F. Chen, Y. T. Lin, and S. T. Huang, "Device combining solar tracker and dual heat source collector," Taiwan Patent I767357, Taiwan Intellectual Property Office, 2022.
51. C. Granet, "Designing axially symmetric Cassegrain or Gregorian dual-reflector antennas from combinations of prescribed geometric parameters," IEEE Antennas and Propagation Magazine, vol. 40, no. 2, pp. 76-82, 1998.
52. A. Z. Hafez, A. Soliman, K. A. El-Metwally, and I. M. Ismail, "Design analysis factors and specifications of solar dish technologies for different systems and applications," Renewable and Sustainable Energy Reviews, vol. 67, pp. 1019-1036, 2017.
53. F. Cavallaro, E. K. Zavadskas, D. Streimikiene, and A. Mardani, "Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy TOPSIS and trigonometric entropy weights," Technological Forecasting and Social Change, vol. 140, pp. 258-270, 2019.
54. N. Arias and F. Jaramillo, "Highly reflective aluminum films on polycarbonate substrates by physical vapor deposition," Applied Surface Science, vol. 505, art. no. 144596, 2020.
55. A. Setyaji, N. A. Pambudi, B. Rudiyanto, B. Basori, N. S. Wardani, A. Susanto, and K. M. Wibowo, "The effect of variations in reflector material on the performance of a solar-powered parabolic trough collector," International Journal of Smart Grid and Clean Energy, vol. 8, no. 6, pp. 757-762, 2019.
56. A. Roos, C. G. Ribbing, and B. Karlsson, "Stainless steel solar mirrors - a material feasibility study," Solar Energy Materials, vol. 18, no. 5, pp. 233-240, 1989.
57. A. Mathews, P., S. R. C. Kalidindi, S. Bhardwaj, and R. Subasri, "Sol-gel functional coatings for solar thermal applications: a review of recent patent literature," Recent Patents on Materials Science, vol. 6, no. 3, pp. 195-213, 2013.
58. R. G. Wankhede, K. Thanawala, A. Khanna, and N. Birbillis, "Development of hydrophobic non-fluorine sol-gel coatings on aluminium using long chain alkyl silane precursor," Journal of Materials Science and Engineering. A, vol. 3, no. 4A, p. 224, 2013.
59. T. Wendelin, "SolTRACE: A New Optical Modeling Tool for Concentrating Solar Optics," in Proc. ISEC 2003: International Solar Energy Conference, Kohala Coast, Hawaii, Mar. 15-18, 2003, pp. 253-260; NREL Report No. CP-550-32866, New York: American Society of Mechanical Engineers.
60. S. Puliaev, J. L. Penna, E. G. Jilinski, and A. H. Andrei, "Solar diameter observations at Observatório Nacional in 1998-1999," Astronomy and Astrophysics Supplement Series, vol. 143, no. 2, pp. 265-267, 2000.
61. Yi-Ze Li, "Numerical Simulation of a Bubbling Fluidized Bed Gasifier Utilizing Wood Pellets," Master's thesis, Dept. of Aeronautics and Astronautics, National Cheng Kung University, 2022.
62. P. D. S. de Vasconcelos and A. L. A. Mesquita, "Minimum and full fluidization velocity for alumina used in the aluminum smelter," International Journal of Engineering Business Management, vol. 3, p. 23, 2011.
63. T. Schneider, F. Ruf, D. Müller, and J. Karl, "Performance of a fluidized bed-fired Stirling engine as micro-scale combined heat and power system on wood pellets," Applied Thermal Engineering, vol. 189, p. 116712, 2021.
64. C. H. Cheng and S. T. Huang, "Modeling of a hybrid power system integrating solar radiation and syngas combustion energy," Energy Science & Engineering, vol. 11, no. 10, pp. 3379-3396, 2023.
65. R. Beltran, N. Velazquez, A. C. Espericueta, D. Sauceda, and G. Perez, "Mathematical model for the study and design of a solar dish collector with cavity receiver for its application in Stirling engines," Journal of Mechanical Science and Technology, vol. 26, pp. 3311-3321, 2012.
66. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes. New York: Wiley, 1980.
67. V. T. Morgan, "The overall convective heat transfer from smooth circular cylinders," in Advances in Heat Transfer, vol. 11, pp. 199-264, 1975.
68. H. S. Yang, C. H. Cheng, and S. T. Huang, "A complete model for dynamic simulation of a 1-kW class beta-type Stirling engine with rhombic-drive mechanism," Energy, vol. 161, pp. 892-906, 2018.
69. H. S. Yang and C. H. Cheng, "Development of a beta-type Stirling engine with rhombic-drive mechanism using a modified non-ideal adiabatic model," Applied Energy, vol. 200, pp. 62-72, 2017.
70. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Incropera's Principles of Heat and Mass Transfer, Global Edition, 8th ed. Hoboken, NJ: Wiley, 2017.
71. Y. A. Çengel, Heat Transfer: A Practical Approach, 3rd ed. McGraw-Hill, 2007.
72. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. Academic Press, 2014.
73. D. Gedeon and J. G. Wood, "Oscillating-flow regenerator test rig: hardware and theory with derived correlations for screens and felts," NASA Center for Aerospace Information, 1996 R.
74. W. J. Hill and W. G. Hunter, "A review of response surface methodology: a literature survey," Technometrics, vol. 8, no. 4, pp. 571-590, 1966.
75. M. Gen and R. Cheng, Genetic Algorithms and Engineering Design. New York: John Wiley & Sons, 1997.
76. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, Apr. 2002.
77. S. Chakraborty, "TOPSIS and Modified TOPSIS: A comparative analysis," Decision Analytics Journal, vol. 2, no. 100021, 2022.
校內:2026-08-20公開