簡易檢索 / 詳目顯示

研究生: 林千玉
Lin, Chian-Yuh
論文名稱: 阻斷雄性素作用降低雄性小鼠於熱中風引發的死亡率
Androgen Blockade Attenuates Heatstroke-Induced Mortality in Male Mice
指導教授: 賴明德
Lai, Ming-Derg
陳勝咸
Chen, Sheng-Hsien
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 122
中文關鍵詞: 熱中風阻斷雄性素睪固酮雄性素拮抗劑氟他胺去勢
外文關鍵詞: heatstroke, androgen blockade, testosterone, androgen antagonist, flutamide, castration
相關次數: 點閱:62下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱中風為臨床醫學上一種危急的疾病,主要症狀有高體溫﹑多器官衰竭、中樞神經損傷。有許多證據顯示,睪固酮在很多疾病中扮演主要的危險因子,包括敗血症、休克、創傷等重症。雖然有研究指出,雄性大鼠之睪固酮與調節熱平衡有關,但尚不明瞭於熱中風的疾病模式,是否也扮演主要危險因子?因此,本研究提出「阻斷雄性素作用可以降低熱中風引起的死亡率」假說,藉由去勢手術或雄性素拮抗劑氟他胺藥物來降低雄性素作用,探討對雄性動物的熱耐受性影響。實驗動物為八週齡大的ICR雄性小鼠,隨機分為數組,包括:常溫對照組、去勢小鼠、假手術去勢小鼠、去勢後補充睪固酮小鼠、去勢後假補充睪固酮小鼠、氟他胺前處理小鼠、對照藥物前處理小鼠、氟他胺後處理小鼠、對照藥物後處理小鼠。除了常溫對照組小鼠於室溫環境下未受熱外,其餘小鼠均給予「全身性均勻受熱」的熱中風動物模式,維持在41.2℃的環境1小時,再取出置於室溫環境下,連續觀察四天存活者做為存活率的計算。所有的生理與生化參數均於受熱完成後2.5小時測量。實驗結果顯示:去勢小鼠與氟他胺前處理&後處理小鼠,均能顯著性 (1) 降低熱中風引起的死亡率與失溫現象,(2) 降低腦神經細胞損傷,(3) 減少下視丘,脾臟,肝臟,腎臟的細胞凋亡現象;而去勢後補充睪固酮小鼠,則會降低上述的保護性效果。此外,氟他胺治療小鼠亦能顯著性降低血液中與熱中風相關的損傷因子,如:氧自由基、乳酸去氫酶、TNF-α、IL-6、骨髓過氧化酶活性。綜合上述結論:阻斷雄性素作用可以保護因熱中風引起的腦神經細胞損傷、多重器官衰竭與致命性傷害。

    Heatstroke is a lethal disease characterized by hyperpyrexia, multiple organ failure, and predominant central nervous system dysfunction. Many evidences showed that testosterone has been implicated as a significant risk factor for many diseases such as sepsis, strokes and severe injury. Although it has shown that testosterone plays a role in the regulation of heat balance in male rats, it remains unknown whether it also plays a significant risk factor in the heatstroke model. The hypothesis was proposed that androgen blockade can attenuate the heatstroke-induced mortality. The androgen effect was inhibited by surgical castration or androgen antagonist (flutamide) to investigate the heat tolerance of male animals. The experimental animals were ICR male mice of 8-wk-old. The animals were randomly divided into several groups. It included the normothermic controls, castrated mice and sham-castrated mice, castrated mice with testosterone replacement and castrated mice with vehicle replacement, flutamide pre-treated mice and vehicle pre-treated mice, flutamide post-treated mice and vehicle post-treated mice. The normothermic controls of mice were exposed to room temperature. Other groups were all subjected to the animal heatstroke model of whole body hyperthermia (WBH) at 41.2℃ for 1 hour and then allowed to recover at room temperature. Mice that survived on day 4 of WBH were considered survivors. Physiological and biochemical parameters were monitored 2.5 h after WBH. The main results showed that castration and flutamide pre-treated or post-treated mice all significantly (i) attenuated heatstroke-induced mortality and hypothermia, (ii) diminished the neuronal damage of brain, (iii) reduced the numbers of the apoptotic cells in the hypothalamus, the spleen, the liver, and the kidney. The above protective effects of castrated mice were prevented by testosterone replacement. In addition, flutamide therapy mice also significantly attenuated the heatstroke-related damage factors in plasma such as oxidative free radicals, lactate dehydrogenase, TNF-α, IL-6, myeloperoxidase activity. In conclusion, the androgen blockade can protect the male mice from heatstroke-induced neuronal damage of brain, multiple organ degeneration and lethality.

    中文摘要 1 英文摘要 2 第一章 緒 論 4 第一節 熱中風 4 一、 熱中風的臨床症狀 4 二、 熱中風的類型與病理反應 4 三、 熱中風的病理機制 6 四、 熱中風的生理調節機制 7 五、 熱中風的臨床治療 9 第二節 性別雙型性 10 第三節 性別雙型性與環境溫度調節的關係 12 第四節 雌性素對急性熱中風的影響 13 第五節 雄性素的種類、合成與生理功能 14 一、 雄性素作用劑 15 二、 雄性素拮抗劑 16 第六節 性荷爾蒙的訊息傳導機制 18 一、雌性素與雌性素受體活化的訊息路徑 19 二、雄性素與雄性素受體活化的訊息路徑 20 第七節 阻斷雄性素療法的臨床應用 23 一、外科去勢(surgical castration):兩側睪丸切除 23 二、內科去勢(medical castration):黃體素釋放作用劑 23 三、抗雄性素藥物(antiandrogen) 24 四、最大雄性素阻斷(Maximal androgen block, MAB) 25 第八節 阻斷雄性素作用保護熱中風的可能分子機轉 26 一、 睪固酮與熱休克蛋白72表現量的關係 26 二、 睪固酮與血栓素A2受體表現量的關係 26 第九節 研究動機 28 第十節 研究目標 29 一、 去勢雄性小鼠對熱中風的影響 29 二、 雄性素拮抗劑-氟他胺對小鼠熱中風的影響 29 三、 雄性素作用劑對小鼠熱中風的影響 30 四、 阻斷雄性素作用之小鼠對熱休克蛋白70表現量的影響 30 第二章 實驗材料與方法 31 第一節 實驗動物 31 第二節 實驗分組 32 一、 去勢雄性小鼠對熱中風的影響 32 二、 雄性素拮抗劑—氟他胺對小鼠熱中風的影響 32 三、 雄性素作用劑對小鼠熱中風的影響 33 四、 阻斷雄性素作用之小鼠對熱休克蛋白70表現量的影響 33 第三節 去勢手術&假手術去勢手術 34 第四節 睪固酮補充&假補充 35 第五節 雄性素拮抗劑:氟他胺藥物補充&假補充 35 第六節 雄性素作用劑:米勒龍藥物補充&假補充 36 第七節 血液收集&血漿睪固酮濃度測定 36 第八節 小鼠體溫量測法 37 第九節 誘發熱中風模式&存活率的觀察 37 第十節 熱中風相關損傷因子分析 38 一、 病理組織冷凍切片 38 二、 免疫組織染色法 39 三、 腦細胞損傷指標 40 四、 發炎指標: TNF-α細胞激素濃度分析 41 五、 抗發炎指標:IL-6細胞激素濃度分析 41 六、 氧化物自由基濃度分析 42 七、 器官損傷指標—乳酸去氫酶LDH濃度分析 43 八、 骨髓過氧化酶(MPO)之活性分析 43 第十一節 檢測熱休克蛋白70 45 一、 組織蛋白質檢體之萃取 45 二、 蛋白質濃度測定方法 45 三、 SDS PAGE的製備 45 四、 電泳分離蛋白質 46 五、 西方墨漬方法 46 第十二節 統計方法 47 第三章 實驗結果 48 第一節 去勢雄性小鼠對熱中風的影響 48 第二節 雄性素拮抗劑-氟他胺對小鼠熱中風的影響 48 第三節 雄性素作用劑對小鼠熱中風的影響 51 第四節 阻斷雄性素作用之小鼠對熱休克蛋白70表現量的影響 51 第四章 討 論 53 第五章 結 論 60 附圖 61 附表 101 參考文獻 112 個人基本資料 122

    1. Lim, C.L. and Mackinnon, L.T. (2006). The roles of exercise-induced immune system disturbances in the pathology of heat stroke : the dual pathway model of heat stroke. Sports Med. 36(1), 39-64.

    2. Bouchama, A. and Knochel, J.P. (2002). Medical progress - Heat stroke. N Engl J Med 346, 1978-1988.

    3. Jardine, D.S. (2007). Heat illness and heat stroke. Pediatr Rev 28, 249-258.

    4. Sharma, H.S. (2005). Heat-related deaths are largely due to brain damage. Indian J Med Res. 121(5), 621-623.

    5. Haines, A., Kovats, R.S., Campbell-Lendrum, D. and Corvalan, C. (2006). Climate change and human health: impacts, vulnerability, and mitigation. Lancet 367, 2101–2109.

    6. Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. and Wanner, H. (2004). European seasonal and annual temperature variability, trends, and extremes since 1500. Microb Ecol 303, 1499–1503.

    7. Pirard, P., Vandentorren, S., Pascal, M., Laaidi, K., Le Tertre, A., Cassadou, S. and Ledrans, M. (2005). Summary of the mortality impact assessment of the 2003 heat wave in France. Euro Surveill 10, 153–156.

    8. Luber, G.E., Sanchez, C.A. and Conklin, L.M. (2006). Heat-related deaths – United States, 1999–2003. MMWR Morb Mortal Wkly Rep 55, 796–8.

    9. Bouchama, A., Dehbi, M., Mohamed, G., Matthies, F., Shoukri, M. and Menne, B. (2007). Prognostic factors in heat wave related deaths: a meta-analysis. Arch Intern Med 167, 2170-2176.

    10. Patz, J.A., Campbell-Lendrum, D., Holloway, T. and Foley, J.A. (2005). Impact of regional climate change on human health. Nature 438, 310-317.

    11. Leon, L.R. and Helwig, B.G. (2010). Heat stroke: Role of the systemic inflammatory response. J Appl Physiol 109, 1980 –1988.

    12. al-Mashhadani, S.A., Gader, A.G., al Harthi, S.S., Kangav, D., Shaheen, F.A. and Bogus, F. (1994). The coagulopathy of heat stroke: alterations in coagulation and fibrinolysis in heat stroke patients during the pilgrimage (Haj) to Makkah. Blood Coagul Fibrinolysis. 5(5), 731-736.

    13. Rowell, L.B. (1983). Cardiovascular aspects of human thermoregulation. Circ Res. 52(4), 367-379.

    14. Green, A.R., O'shea, E. and Colado, M.I. (2004). A review of the mechanisms involved in the acute MDMA (ecstasy)-induced hyperthermic response. Eur J Pharmacol. 500(1-3), 3-13.

    15. Rusyniak, D.E. and Sprague, J.E. (2006). Hyperthermic syndromes induced by toxins. Clin Lab Med. 26(1), 165-84, ix.

    16. Carter, R. 3rd., Cheuvront, S.N., Williams, J.O., Kolka, M.A., Stephenson, L.A., Sawka, M.N. and Amoroso, P.J. (2005). Epidemiology of hospitalizations and deaths from heat illness in soldiers. Med Sci Sports Exerc. 37(8), 1338-1344.

    17. Coss, R.A. and Linnemans, W.A. (1996). The effects of hyperthermia on the cytoskeleton: a review. Int J Hyperthermia. 12(2), 173- 196.

    18. Streffer, C. (1988). Aspects of metabolic change after hyperthermia. Recent Results Cancer Res. 107, 7-16.

    19. Yang, C.Y. and Lin, M.T. (2002). Oxidative stress in rats with heatstroke-induced cerebral ischemia. Stroke. 33(3), 790-794.

    20. Nybo L. (2007). Exercise and heat stress: cerebral challenges and consequences. Prog Brain Res 162, 29–43.

    21. Dokladny, K., Moseley, P.L. and Ma, T.Y. (2006). Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability. Am J Physiol Gastrointest Liver Physiol 290, G204–G212.

    22. Hall, D.M., Buettner, G.R., Oberley, L.W., Xu, L., Matthes, R.D. and Gisolfi, C.V. (2001). Mechanisms of circulatory and intestinal barrier dysfunction during whole
    body hyperthermia. Am J Physiol Heart Circ Physiol 280, H509–H521.

    23. Lambert, G.P., Gisolfi, C.V., Berg, D.J., Moseley, P.L., Oberley, L.W. and Kregel, K.C. (2002). Selected contribution: Hyperthermia-induced intestinal permeability
    and the role of oxidative and nitrosative stress. J Appl Physiol 92, 1750–1761.

    24. Bouchama, A., Hammami, M.M., Haq, A., Jackson, J. and Al-Sedairy, S. (1996). Evidence for endothelial cell activation/injury in heatstroke. Crit Care Med 24, 1173–1178.

    25. Mustafa, K.Y., Omer, O., Khogali, M., Jamjoom, A., Gumaa, K.A., Abuel-Nasr, N. and Gader, M.A. (1985). Blood coagulation and fibrinolysis in heat stroke. Br J Haematol 61, 517–523.

    26. Gabay, C. and Kushner, I. (1999). Acute- phase proteins and other systemic responses to inflammation. N Engl J Med 340, 448-454.

    27. Bouchama, A., Parhar, R.S., el-Yazigi, A., Sheth, K. and al-Sedairy, S. (1991). Endotoxemia and release of tumor necrosis factor and interleukin 1 alpha in acute heatstroke. J Appl Physiol. 70(6), 2640-2644.

    28. Bouchama, A., al-Sedairy, S., Siddiqui, S., Shail, E. and Rezeig, M. (1993). Elevated pyrogenic cytokines in heatstroke. Chest. 104(5), 1498-1502.

    29. Lindquist, S. (1986). The heat-shock response. Annu Rev Biochem 55, 1151–1191.

    30. Yang, Y.L. and Lin, M.T. (1999). Heat shock protein expression protects against cerebral ischemia and monoamine overload in rat heatstroke. Am J Physiol. 276(6 Pt 2), H1961-1967.

    31. Saibil, H.R. (2008). Chaperone machines in action. Curr Opin Struct Biol 18, 35–42.

    32. Angele, M.K., Frantz, M.C. and Chaudry, I.H. (2006). Gender and sex hormones influence the response to trauma and sepsis: potential therapeutic approaches. Clinics 61, 479-488.

    33. Grossman, C.J. (1984). Regulation of the immune-system by sex steroids. Endocr Rev 5, 435-455.

    34. Schuurs, A. and Verheul, HAM. (1990). Effects of gender and sex steroids on the immune-response. J Steroid Biochem Mol Biol 35, 157-172.

    35. Tanriverdi, F., Silveira, L.F., MacColl, G.S. and Bouloux, P.M. (2003). The hypothalamic-pituitary-gonadal axis: immune function and autoimmunity. J Endocrinol 176, 293-304.

    36. Kemp, C.J. and Drinkwater, N.R. (1989). Genetic variation in liver tumor susceptibility, plasma testosterone levels, and androgen receptor binding in six inbred strains of mice. Cancer Res 49, 5044-5047.

    37. Schroder, J., Kahlke, V., Staubach, K.H., Zabel, P. and Stuber, F. (1998). Gender differences in human sepsis. Arch Surg 133, 1200-1205.

    38. Angele, M.K., Schwacha, M.G., Ayala, A. and Chaudry, I.H. (2000). Effect of gender and sex hormones on immune responses following shock. Shock 14, 81-90.

    39. Oberholzer, A., Keel, M., Zellweger, R., Steckholzer, U., Trentz, O. and Ertel, W. (2000). Incidence of septic complications and multiple organ failure in severely injured patients is sex specific. J Trauma 48, 932-937.

    40. Remmers, D.E., Cioffi, W.G., Bland, K.I., Wang, P., Angele, M.K. and Chaudry, I.H. (1998). Testosterone: the crucial hormone responsible for depressing myocardial function in males after trauma-hemorrhage. Ann Surg 227, 790-799.

    41. Wichmann, M.W., Zellweger, R., DeMaso, C.M., Ayala, A. and Chaudry, I.H. (1996). Mechanism of immunosuppression in males following trauma-hemorrhage. Critical role of testosterone. Arch Surg 131, 1186-1191; discussion 1191-1192.

    42. Remmers, D.E., Wang, P., Cioffi, W.G., Bland, K.I. and Chaudry, I.H. (1997). Testosterone receptor blockade after trauma-hemorrhage improves cardiac and hepatic functions in males. Am J Physiol 273, H2919-2925.

    43. Wichmann, M.W., Angele, M.K., Ayala, A., Cioffi, W.G. and Chaudry, I.H. (1997). Flutamide: a novel agent for restoring the depressed cell-mediated immunity following soft-tissue trauma and hemorrhagic shock. Shock 8, 242-248.

    44. Altura, B.M. (1976). Sex and estrogens in protection against circulatory stress reactions. Am J Physiol 231, 842-847.

    45. Mizushima, Y., Wang, P., Jarrar, D., Cioffi, W.G., Bland, K.I. and Chaudry, I.H. (2000). Estradiol administration after trauma-hemorrhage improves cardiovascular and hepatocellular functions in male animals. Ann Surg 232, 673-679.

    46. Weckerle, C.E. and Niewold, T.B. (2011). The unexplained female predominance of systemic lupus erythematosus: clues from genetic and cytokine studies. Clin Rev Allergy Immunol. 40(1), 42-49.

    47. Nicot, A. (2009). Gender and sex hormones in multiple sclerosis pathology and therapy. Front Biosci. 14, 4477-4515.

    48. Gaillard, R.C. and Spinedi, E. (1998). Sex- and stress-steroids interactions and the immune system: evidence for a neuroendocrine-immunological sexual dimorphism. Domest Anim Endocrinol. 15(5), 345-352.

    49. Islander, U., Jochems, C., Lagerquist, M.K., Forsblad-d'Elia, H. and Carlsten, H. (2011). Estrogens in rheumatoid arthritis; the immune system and bone. Mol Cell Endocrinol. 335(1), 14-29.

    50. Graham, T. (1988). Thermal, metabolic and cardiovascular changes in men and women during cold stress. Med Sci Sports Exerc 20, S185–S192.

    51. Kaciuba-Uscilko, H. and Grucza, R. (2001). Gender differences in thermoregulation. Curr Opin Clin Nutr Metab Care 4, 533–536.

    52. Vierck, C.J., Acosta-Rua1, A.J., Rossi, H.L. and Neubert, J.K. (2008). Sex differences in thermal pain sensitivity and sympathetic reactivity for two strains of rat. J Pain. 9(8), 739–749.

    53. Pennycuik, P.R. (1971). Effect of acclimatization to 33℃ on the oxygen uptake, growth rate and reproductive productivity of hairless and naked mice. Aust J Biol Sci 24, 301-310.

    54. Matsuda, T., Nakano, Y., Kanda, T., Iwata, H. and Baba, A. (1991). Gonadal hormones affect the hypothermia induced by serotonin1A (5-HT1A) receptor activation. Life Sci. 48(17), 1627-32.

    55. Shvareva, N., Kaplanski, J., Abramovich, L. and Sod-Moriah, U.A. (1998). Testosterone modifies response to chronic heat exposure in rats. Comp Biochem Physiol A Mol Integr Physiol 120(4), 575–578.

    56. Kao, T.Y., Chio, C.C. and Lin, M.T. (1994). Hypothalamic dopamine release and local cerebral blood flow during onset of heatstroke in rats. Stroke 25, 2483-2486; discussion 2486-2487.

    57. Chen, S.H., Chang, F.M., Niu, K.C., Lin, M.Y.S. and Lin, M.T. (2006). Resuscitation from experimental heatstroke by estrogen therapy. Crit Care Med 34, 1113-1118.

    58. Shen, K.H., Lin, C.H., Chang, H.K., Chen, W.C. and Chen, S.H. (2008). Premarin can act via estrogen receptors to rescue mice from heatstroke-induced lethality. Shock 30(6), 668-674.

    59. Bilinska, B., Wiszniewska, B., Kosiniak-Kamysz, K., Kotula-Balak, M., Gancarczyk, M., Hejmej, A., Sadowska, J., Marchlewicz, M., Kolasa, A. and Wenda-Rozewicka, L. (2006). Hormonal status of male reproductive system: androgens and estrogens in the testis and epididymis. In vivo and in vitro approaches. Reprod Biol 6, 43-58.

    60. Labrie, F., Luu-The, V., Bélanger, A., Lin, S.X., Simard, J., Pelletier, G. and Labrie, C. (2005). Is dehydroepiandrosterone a hormone? J Endocrinol. 187(2), 169-196.

    61. Kemppainen, J.A., Langley, E., Wong, C.I., Bobseine, K., Kelce, W.R. and Wilson, E.M. (1999). Distinguishing androgen receptor agonists and antagonists: distinct mechanisms of activation by medroxyprogesterone acetate and dihydrotestosterone. Mol Endocrinol. 13(3), 440-54.

    62. Murthy, L.R., Johnson, M.P., Rowley, D.R., Young, C.Y., Scardino, P.T. and Tindall, D.J. (1986). Characterization of steroid receptors in human prostate using mibolerone. Prostate. 8(3), 241-253.

    63. Foradori, C.D., Weiser, M.J. and Handa, R.J. (2008). Non-genomic actions of androgens. Front Neuroendocrinol. 29(2), 169-181.

    64. Kos, M., Denger, S., Reid, G. and Gannon, F. (2002). Upstream open reading frames regulate the translation of the multiple mRNA variants of the estrogen receptor alpha. J Biol Chem. 277(40), 37131-37138.

    65. Fox, H.S., Bond, B.L. and Parslow, T.G. (1991). Estrogen regulates the IFN-gamma promoter. J Immunol. 146(12), 4362-4367.

    66. Vasudevan, N. and Pfaff, D.W. (2007). Membrane-initiated actions of estrogens in neuroendocrinology: emerging principles. Endocr Rev. 28(1), 1-19.

    67. Raju, R. and Chaudry, I.H. (2008). Sex steroids/receptor antagonist: their use as adjuncts after trauma-hemorrhage for improving immune/cardiovascular responses and for decreasing mortality from subsequent sepsis. Anesth Analg. 107(1), 159-166.

    68. Razandi, M., Pedram, A., Greene, G.L. and Levin, E.R. (1999). Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells. Mol Endocrinol. 13(2), 307-319.

    69. Lubahn, D.B., Joseph, D.R., Sullivan, P.M., Willard, H.F., French, F.S. and Wilson, E.M. (1988). Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240, 327–330.

    70. O’Malley, B.W., Yamagata, K., Fujiyama, S., Ito, S., Ueda, T. (1991). Molecular mechanism of action of a steroid hormone receptor. Recent Prog Horm Res 47, 1–24.

    71. Wyce, A., Bai, Y., Nagpal, S. and Thompson, C.C. (2010). Research Resource: The androgen receptor modulates expression of genes with critical roles in muscle development and function. Mol Endocrinol. 24(8), 1665-1674.

    72. Lu, N.Z., Wardell, S.E., Burnstein, K.L., Defranco, D., Fuller, P.J., Giguere, V., Hochberg, R.B., McKay, L., Renoir, J.M., Weigel, N.L., Wilson, E.M., McDonnell, D.P. and Cidlowski, J.A. (2006). International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev 58, 782–797.

    73. Gottlieb, B., Beitel, L.K., Wu, J.H. and Trifiro, M. (2004). The androgen receptor gene mutations database (ARDB). Hum Mutat 23, 527–533.

    74. McKenna, N.J., Lanz, R.B. and O'Malley, B.W. (1999). Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev. 20(3), 321-344.

    75. Panet-Raymond, V., Gottlieb, B., Beitel, L.K., Pinsky, L. and Trifiro, M.A. (2000). Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Mol Cell Endocrinol. 167(1-2), 139-150.

    76. Chen, S., Wang, J., Yu, G., Liu, W. and Pearce, D. (1997). Androgen and glucocorticoid receptor heterodimer formation. A possible mechanism for mutual inhibition of transcriptional activity. J Biol Chem. 272(22), 14087-14092.

    77. Lee, Y.F., Shyr, C.R., Thin, T.H., Lin, W.J. and Chang, C. (1999). Convergence of two repressors through heterodimer formation of androgen receptor and testicular orphan receptor-4: a unique signaling pathway in the steroid receptor superfamily. Proc Natl Acad Sci U S A. 96(26), 14724-14729.

    78. Denmeade, S.R. and Isaacs, J.T. (2002). A history of prostate cancer treatment. Nat Rev Cancer. 2(5), 389-396.

    79. Kohno, H., Takahashi, N., Shinohara, T., Ooie, T., Yufu, K., Nakagawa, M., Yonemochi, H., Hara, M., Saikawa, T. and Yoshimatsu, H. (2007). Receptor-mediated suppression of cardiac heat-shock protein 72 expression by testosterone in male rat heart. Endocrinology 148(7), 3148-3155.

    80. Aoki, K., Yoshino, A., Ueda, Y., Urano, T. and Takada, A. (1998). Severe heat stroke associated with high plasma levels of plasminogen activator inhibitor 1. Burns. 24(1), 74-77.

    81. Ajayi, A.A., Mathur, R. and Halushka, P.V. (1995). Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses. Circulation. 91(11), 2742-2747.

    82. Ajayi, A.A. and Halushka, P.V. (2005). Castration reduces platelet thromboxane A2 receptor density and aggregability. QJM. 98(5), 349-356.

    83. Pulsinelli, W.A., Brierley, J.B. and Plum, F. (1982). Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 11(5), 491-498.

    84. Mullane, K.M., Kraemer, R. and Smith, B. (1985). Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J Pharmacol Methods 14(3), 157-167.

    85. Feihl, F., Waeber, B. and Liaudet, L. (2001). Is nitric oxide overproduction the target of choice for the management of septic shock? Pharmacol Ther 91, 179-213.

    86. Kim, P.K. and Deutschman, C.S. (2000). Inflammatory responses and mediator. Surg Clin North Am 80, 885-894.

    87. Niviere, R.R., Cepinskas, G., Madorin, W.S., Hoque, N., Karmazyn, M., Sibbald, W.J. and Kvietys, P.R. (1999). LPS pretreatment ameliorates peritonitis-induced myocardial inflammation and dysfunction: role of myocytes. Am J Physiol 277, H885-H892.

    88. Angele, M.K., Wichmann, M.W., Ayala, A., Cioffi, W.G. and Chaudry, I.H. (1997). Testosterone receptor blockade after hemorrhage in males: restoration of the depressed immune function and improved survival following subsequent sepsis. Arch Surg 132, 1207-1214.

    89. Ba, Z.F., Wang, P., Koo, D.J., Zhou, M., Cioffi, W.G., Bland, K.I. and Chaudry, I.H. (2000). Testosterone receptor blockade after trauma and hemorrhage attenuates depressed adrenal function. Am J Physiol Regul Integr Comp Physiol 279, R1841-R1848.

    90. Pielecka, J. and Moenter S.M. (2006). Effect of steroid milieu on gonadotropin-releasing hormone-1 neuron firing pattern and luteinizing hormone levels in male mice. Biol Reprod. 74(5), 931-937.

    91. Matsuda, K., Ruff, A., Morinelli, T.A., Mathur, R.S. and Halushka, P.V. (1994). Testosterone increases thromboxane A2 receptor density and responsiveness in rat aortas and platelets. Am J Physiol 267(3), H887-H893.

    92. Johnson, M., Ramey, E. and Ramwell, P.E. (1977). Androgen-mediated sensitivity in platelet aggregation, Am J Physiol 232(4), H381-H385.

    93. Uzunova, A., Ramey, E. and Ramwell, P.W. (1976). Effect of testosterone, sex and age on experimentally induced arterial thrombosis, Nature 261(5562), 712-713.

    94. Feldman, B. J. and Feldman, D. (2001). The development of androgen-independent prostate cancer. Nat Rev Cancer 1, 34-45.

    下載圖示 校內:2015-08-22公開
    校外:2015-08-22公開
    QR CODE