簡易檢索 / 詳目顯示

研究生: 陳秋月
Chen, Chiu-Yueh
論文名稱: 利用Rhodostomin研究Integrin的辨識序列和研發製備胺基酸選擇性同位素標示蛋白的方法
Use of Rhodostomin to Study the Integrin Recognition Sequences and to Establish a Method for Preparing Amino-Acid-Type Selective Isotope Labeling of Proteins
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 106
中文關鍵詞: 蛇毒去整合蛋白整合蛋白
外文關鍵詞: P. pastoris, integrin, disintegrin, dendroaspin, rhodostomin, amino-acid-type selective isotope labeling prote
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   整合蛋白(integrins)是一群位於細胞表面的alpha、beta異質雙體,其功能與細胞的黏著、移動、和訊息傳遞有關。很多生理及非生理方面的整合蛋白受質是利用RGD、LDV、或相關序列做為它們與整合蛋白黏結的基本結構。Rhodostomin(簡稱Rho)是個含有68個胺基酸及6對雙硫鍵的蛋白,其中含有一段48PRGDMP53序列會高親和力競爭纖維蛋白原(fibrinogen)在血小板上的整合蛋白alphaIIbbeta3之黏結部位,而抑制了血小板的凝集。最近的研究也證實了與整合蛋白黏結的RGD序列附近胺基酸會對整合蛋白alphaIIbbeta3、alphaVbeta3、及alpha5beta1產生特異性。為了研究整合蛋白alphaIIbbeta3、alphaVbeta3、及alpha5beta1可辨識的特異性序列,我們將Rho的RGD loop或C端附近區域的胺基酸作突變,並表現在可正確表現Rho的Pichia pastoris系統中,利用血小板凝集抑制試驗及細胞黏著抑制實驗作為這些序列的功能性分析。我們發現在RGD loop中含有AKGDWN以及RLD和RGDD序列可以分別特異性地抑制表現整合蛋白alphaIIbbeta3以及alphaVbeta3細胞的黏結,而含有ARGDGW及ARGDXX序列的突變蛋白對整合蛋白alpha5beta1有較好的特異性或活性。相對地,在Rho的C端附近區域對這3種整合蛋白的黏結只有些微的影響。為了了解這些對整合蛋白有特異性的去整合蛋白之結構與功能的關係,利用NMR分析它們的3D結構發現在RGD motif的殘基R49和D51所在的方位及動態在整合蛋白的辨識上扮演著重要角色。另外,為了在P. pastoris系統中成功表現出胺基酸選擇性(amino-acid-type selective;AATS)同位素標示蛋白,利用Rho去嘗試AATS同位素標示蛋白的培養條件且成功地應用生產出AATS同位素標示Rho,這些[alpha-15N]-Cys、-Leu、-Lys、和-Met Rho都有大於50%的同位素胺基酸嵌入程度。此外,同樣的培養條件也可成功地應用在P. pastoris系統中表現出含有4對雙硫鍵AATS同位素標示的蛋白dendroaspin。這是第一個在P. pastoris系統中表現出AATS同位素標示蛋白的研究。將來可作為我們探索整合蛋白與去整合蛋白複合體間的結構與活性關係的基礎,也可以幫助整合蛋白相關的藥物設計。

     Integrins are alpha/betaheterodimers on cellular membrane and involved in cell adhesion, mobility, and signal transduction. Many physiological and non-physiological integrin ligands utilize RGD, LDV, or a related sequence as a key structural component of their integrin-binding site. Rhodostomin (Rho) is a potent integrin antagonist, which consists of 68 amino acids including six disulfide bonds and a PRGDMP sequence at the positions of 48-53. Rho competes against fibrinogen in the binding of integrin alphaIIbbeta3 on platelet and results in inhibiting platelet aggregation. Many studies have also demonstrated that the amino acid residues flanking the RGD sequence of integrin ligands modulate their specificity of interaction with integrin alphaIIbbeta3,alphaVbeta3, and alpha5beta1 complexes. In order to identify the amino acid residues required for selective recognition of integrins alphaIIbbeta3, alphaVbeta3, andalpha5beta1, we mutated the residues in the RGD loop or C-terminal region of Rho, expressed Rho mutants in P. pastoris, and used the platelet aggregation and cell adhesion assays for functional studies. We found that Rho mutants containing the sequences AKGDWN, as well as RLD and RGDD can selectively inhibit integrins alphaIIbbeta3 and alphaVbeta3, respectively. In addition, the mutants containing the sequences ARGDGW and ARGDXX have better selectivity or activity in inhibiting integrin alpha5beta1. 3D structures of integrin-specific Rho mutants were determined by NMR spectroscopy. Our results showed that the orientations of R49 and D51 residues and dynamic properties of the RGD motif in Rho play important roles in integrin recognition. To develop the protocol to produce amino-acid-type selective (AATS) isotope labeling of protein expressed in P. pastoris, Rho was used to optimize the culture condition. The optimized protocol was successfully applied to produce AATS isotope-labeled Rho and other protein, dendroaspin. The labeling of [alpha-15N]-Cys, -Leu, -Lys, and -Met amino acids has an incorporation rate greater than 50%. In addition, the culture condition was successfully applied to label dendroaspin, a four disulfide-bonded protein expressed in P. pastoris. This is the first study to present a protocol for AATS isotope labeling of protein expressed in P. pastoris. This study will serve as the basis for exploring structure-activity relationships of the integrin/disintegrin complexes as well as rational drug design on integrins.

    目 錄 中文摘要 I 英文摘要 II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 縮寫檢索表 X 儀器 XI 第1章 緒論1 1-1 背景資料1 1-1-1 整合蛋白(integrin)之介紹1 1-1-2 去整合蛋白(disintegrin)之介紹4 1-1-3 Rhodostomin(簡稱Rho)之介紹6 1-1-4 Dendroaspin(簡稱Den)之介紹7 1-1-5 酵母菌Pichia pastoris(P. pastoris)表現系統之介紹8 1-1-6 選擇性同位素標示胺基酸蛋白(amino-acid-type selective isotope labeling protein,簡稱AATS同位素標示蛋白)之介紹10 1-2 研究動機與目標12 第2章 材料與方法13 2-1 Rho與突變株重組蛋白之製備13 2-1-1 實驗菌株、質體、與培養基配方13 2-1-2 重組基因之構築15 2-1-3 重組蛋白之表現與純化18 2-1-4 重組蛋白之質譜鑑定22 2-2 Rho與突變株重組蛋白抑制血小板凝集功能之研究22 2-2-1 血小板之製備23 2-2-2 抑制血小板凝集功能之分析23 2-3 Rho與突變株重組蛋白抑制細胞黏著之研究24 2-3-1 細胞培養(cell culture)24 2-3-2 Fibronectin之製備26 2-3-3 Vitronectin之純化27 2-3-4 抑制細胞黏著之分析 28 2-4 利用酵母菌P. pastoris表現系統製備AATS同位素標示蛋白之研究29 2-4-1 製備AATS同位素標示蛋白之培養基配方29 2-4-2 AATS同位素標示蛋白及15N-Rho之製備30 2-4-3 NMR蛋白樣品之製備31 2-4-4 NMR光譜之測定31 第3章 結果32 3-1 Rho與突變株重組蛋白之製備與鑑定32 3-2 Rho與突變株重組蛋白抑制血小板凝集的結果33 3-3 Rho與突變株重組蛋白抑制細胞黏著的結果34 3-3-1 測試抑制細胞黏著條件的結果34 3-3-2 Rho與突變株重組蛋白對整合蛋白alphaIIbbeta3、alphaVbeta3、和alpha5beta1的影響36 3-3-3 對整合蛋白alphaIIbbeta3較有特異性的序列之整理37 3-3-4 對整合蛋白alphaVbeta3較有特異性的序列之整理37 3-3-5 48A在RGD loop中對整合蛋白alpha5beta1的影響37 3-3-6 對整合蛋白alphaIIbbeta3、alphaVbeta3、及alpha5beta1較有特異性的序列之總整理38 3-3-7 C端區域序列的改變對血小板凝集抑制和整合蛋白alphaIIbalpha3、alphaVbeta3、及alpha5beta1的影響之比較38 3-3-8 整合蛋白alphaIIbbeta3細胞黏著抑制實驗結果與血小板凝集抑制結果之比較39 3-4 利用酵母菌P. pastoris表現系統製備AATS同位素標示蛋白的結果39 3-4-1 最佳化AATS同位素標示蛋白培養條件的結果40 3-4-2 製備AATS同位素標示Rho的結果40 3-4-3 製備AATS同位素標示Den的結果41 3-4-4 比較AATS同位素標示Rho與Den的結果42 第4章 討論43 4-1 Rho與突變株重組蛋白對於整合蛋白的影響43 4-1-1 對整合蛋白alphaIIbbeta3較有特異性的序列之討論45 4-1-2 對整合蛋白alphaVbeta3較有特異性的序列之討論46 4-1-3 48A在RGD loop中對整合蛋白alpha5beta1的影響之討論47 4-1-4 C端區域的序列中對整合蛋白alphaIIbbeta3、alphaVbeta3、及alpha5beta1的影響47 4-1-5 整合蛋白alphaIIbbeta3細胞黏著抑制實驗結果與血小板凝集抑制結果比較之探討48 4-1-6 去整合蛋白的研究對未來的貢獻49 4-2 利用酵母菌P. pastoris表現系統製備AATS同位素標示蛋白之探討51 第5章 結論53 參考文獻 55 表 65 圖 86 附錄 104 自述 105 發表的著作106

    Alder M, Lazarus RA, Dennis MS, Wagner G.: Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science. 253: 445-8, 1991.
    Altieri DC, Plescia J, Plow EF.: The structural motif glycine 190-valine 202 of the fibrinogen gamma chain interacts with CD11b/CD18 integrin (alpha M beta 2, Mac-1) and promotes leukocyte adhesion. J Biol Chem. 268: 1847-53, 1993.
    Anderluh M, Cesar J, Stefanic P, Kikelj D, Janes D, Murn J, Nadrah K, Tominc M, Addicks E, Giannis A, Stegnar M, Dolenc MS.: Design and synthesis of novel platelet fibrinogen receptor antagonists with 2H-1,4-benzoxazine-3(4H)-one scaffold. A systematic study. Eur J Med Chem. 40: 25-49, 2005.
    Arnaout MA, Mahalingam B, Xiong JP.: Integrin Structure, Allostery, and Bidirectional Signaling. Annu Rev Cell Dev Biol. 21: 381-410, 2005.
    Berman AE, Kozlova NI, Morozevich GE.: Integrins: structure and signaling. Biochemistry. 68: 1284-99, 2003.
    Block E, Glass RS, Jacobsen NE, Johnson S, Kahakachchi C, Kaminski R, Skowronska A, Boakye HT, Tyson JF, Uden PC.: Identification and synthesis of a novel selenium-sulfur amino acid found in selenized yeast: Rapid indirect detection NMR methods for characterizing low-level organoselenium compounds in complex matrices. J Agric Food Chem. 52: 3761-71, 2004.
    Bushnell DA, Cramer P, Kornberg RD.: Selenomethionine incorporation in Saccharomyces cerevisiae RNA polymerase II. Structure. 9: R11-R14, 2001.
    Chang CP, Chang JC, Chang HH, Tsai WJ, Lo SJ.: Positional importance of Pro53 adjacent to the Arg49-Gly50-Asp51 sequence of rhodostomin in binding to integrin alphaIIbbeta3. Biochem J. 357: 57-64, 2001.
    Chang HH, Chang CP, Chang JC, Dung SZ, Lo SJ.: Application of Recombinant Rhodostomin in Studying Cell Adhesion. J Biomed Sci. 4: 235-243, 1997.
    Chang HH, Hu ST, Huang TF, Chen SH, Lee YH, Lo SJ.: Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun. 190: 242-9, 1993.
    Cochran AG, Tong RT, Starovasnik MA, Park EJ, McDowell RS, Theaker JE, Skelton NJ.: A minimal peptide scaffold for beta-turn display: optimizing a strand position in disulfide-cyclized beta-hairpins. J Am Chem Soc. 123: 625-32, 2001.
    Copie V, Tomita Y, Akiyama SK, Aota S, Yamada KM, Venable RM, Pastor RW, Krueger S, Torchia DA.: Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure. J Mol Biol. 277: 663-82, 1998.
    Daly R, Hearn MT.: Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit. 18: 119-38, 2005.
    De Bree FM, Brzozowski AM, Gellerfors P, Karlsson G, Ronnholm H, Breme U, Caccia P, Taylor G, Orsini G.: Preparation and characterization of the recombinant selenomethionine analogue of insulin-like growth factor-I. Protein Expr Purif. 13: 319-25, 1998.
    Dennis MS, Carter P, Lazarus RA.: Binding interactions of kistrin with platelet glycoprotein IIb-IIIa: analysis by site-directed mutagenesis. Proteins. 15: 312-21, 1993.
    Dresner-Pollak R, Rosenblatt M.: Blockade of osteoclast-mediated bone resorption through occupancy of the integrin receptor: a potential approach to the therapy of osteoporosis. J Cell Biochem. 56: 323-30, 1994.
    D'Souza SE, Ginsberg MH, Plow EF.: Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci. 16: 246-50, 1991.
    Faull RJ, Du X, Ginsberg MH.: Receptors on platelets. Methods Enzymol. 245: 183-94, 1994.
    Gehlsen KR, Davis GE, Sriramarao P.: Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin Exp Metastasis. 10: 111-20, 1992.
    Goh KL, Yang JT, Hynes RO.: Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development. 124: 4309-19, 1997.
    Goto NK, Kay LE.: New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol. 10: 585-92, 2000.
    Gould RJ, Polokoff MA, Friedman PA, Huang TF, Holt JC, Cook JJ, Neiwiarowski S.: Disintegrins: A family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Bio. Med. 195: 168-71, 1990.
    Guo RT, Chou LJ, Chen YC, Chen CY, Pari K, Jen CJ, Lo SJ, Huang SL, Lee CY, Chang TW, Chaung WJ.: Expression in Pichia pastoris and characterization by circular dichroism and NMR of rhodostomin. Proteins. 43: 499-508, 2001.
    Harper M, Thompson TL, Zhu YN, Smith RL, Carden D, Coe L, Alexander B, Alexander JS.: Rapid, high-yield method for the bulk purification of fibronectin from human plasma. BioTechniques. 28: 636-8, 2000.
    Hautanen A, Gailit J, Mann DM, Ruoslahti E.: Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J Biol Chem. 264: 1437-42, 1989.
    Hemler ME, Huang C, Schwarz L.: The VLA protein family. Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight beta subunit. J Biol Chem. 262: 3300-9, 1987.
    Higgins DR, Cregg JM, Editors.: Methods in Molecular Biology: Pichia Protocols, Totowa, NJ: Humana Press, 1998.
    Hong SY, Sohn YD, Chung KH, Kim DS.: Structural and functional significance of disulfide bonds in saxatilin, a 7.7 kDa disintegrin. Biochem Biophys Res Commun. 293: 530-6, 2002.
    Huang TF.: What have snakes taught us about integrins? Cell Mol Life Sci. 54: 527-40, 1998.
    Huang TF, Sheu JR, Teng CM, Chen SW, Liu CS.: Triflavin, an antiplatelet Arg-Gly-Asp-containing peptide, is a specific antagonist of platelet membrane glycoprotein IIb-IIIa complex. J Biochem. 109: 328-34, 1991.
    Huang TF, Yeh CH, Wu WB.: Viper venom components affecting angiogenesis. Haemostasis. 31: 192-206, 2001.
    Huang TF, Wu YJ, Ouyang C.: Characterization of a potent platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochim Biophys Acta. 925: 248-57, 1987.
    Humphries MJ.: Cell-substrate adhesion assays. Current Protocols in Cell Biology. 9.1.1-9.1.11, 1998.
    Humphries MJ.: Integrin structure. Biochem Soc Trans. 28: 311-39, 2000.
    Humphries MJ, Mould AP.: Structure. An anthropomorphic integrin. Science. 294: 316-7, 2001.
    Hynes RO.: Integrins: a family of cell surface receptors. Cell. 48: 549-54, 1987.
    Hynes RO.: Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 69: 11-25, 1992.
    Jaseja M, Lu X, Williams JA, Sutcliffe MJ, Kakkar VV, Parslow RA, Hyde EI.: 1H-NMR assignments and secondary structure of dendroaspin, an RGD-containing glycoprotein IIb-IIIa (alpha IIb-beta 3) antagonist with a neurotoxin fold. Eur J Biochem. 226: 861-8, 1994.
    Kagami S, Kondo S, Loster K, Reutter W, Kuhara T, Yasutomo K, Kuroda Y.: Alpha1beta1 integrin-mediated collagen matrix remodeling by rat mesangial cells is differentially regulated by transforming growth factor-beta and platelet-derived growth factor-BB. J Am Soc Nephrol. 10: 779-89, 1999.
    Kagami S, Kuhara T, Yasutomo K, Okada K, Loster K, Reutter W, Kuroda Y.: Transforming growth factor-beta (TGF-beta) stimulates the expression of beta1 integrins and adhesion by rat mesangial cells. Exp Cell Res. 229: 1-6, 1996.
    Kainosho M.: Isotope labelling of macromolecules for structural determinations. Nat Struct Biol. 4: Suppl: 858-861, 1997.
    Kim S, Bell K, Mousa SA, Varner JA.: Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol. 156: 1345-62, 2000.
    Koivunen E, Wang B, Ruoslahti E.: Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol. 124: 373-80, 1994.
    Koivunen E, Wang B, Ruoslahti E.: Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology. 13: 265-70, 1995.
    Kulkarni GV, Chen B, Malone JP, Narayanan AS, George A.: Promotion of selective cell attachment by the RGD sequence in dentine matrix protein 1. Arch Oral Biol. 45: 475-84, 2000.
    Kuntz ID.: Structure-based strategies for drug design and discovery. Science. 257: 1078-82, 1992.
    Lahteenmaki K, Edelman S, Korhonen TK.: Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol. 13: 79-85, 2005.
    Larsson AM, Stahlberg J, Jones TA.: Preparation and crystallization of selenomethionyl dextranase from Penicillium minioluteum expressed in Pichia pastoris. Acta Crystallogr D Biol Crystallogr. 58: 346-8, 2002.
    Lee JO, Rieu P, Arnaout MA, Liddington R.: Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell. 80: 631-8, 1995.
    LeMaster DM, Richards FM.: 1H-15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type. Biochemistry. 24: 7263-8, 1985.
    Lin YT, Tang CH, Chuang WJ, Wang SM, Huang TF, Fu WM.: Inhibition of adipogenesis by RGD-dependent disintegrin. Biochem Pharmacol. 70: 1469-78, 2005.
    Li R, Hoess RH, Bennett JS, DeGrado WF.: Use of phage display to probe the evolution of binding specificity and affinity in integrins. Protein Eng. 16: 65-72, 2003.
    Locardi E, Mullen DG, Mattern RH, Goodman M.: Conformations and pharmacophores of cyclic RGD containing peptides which selectively bind integrin alpha(v)beta3. J Pept Sci. 5: 491-506, 1999.
    Lo SJ, Chang HH.: Recombinant snake disintegrins used for mammalian integrin study. Toxin Rev. 24: 95-111, 2005.
    Lueking A, Holz C, Gotthold C, Lehrach H, Cahill D.: A system for dual protein expression in Pichia pastoris and Escherichia coli. Protein Expr Purif. 20: 372-8, 2000.
    Lu X, Rahman S, Kakkar VV, Authi KS.: Substitutions of proline 42 to alanine and methionine 46 to asparagine around the RGD domain of the neurotoxin dendroaspin alter its preferential antagonism to that resembling the disintegrin elegantin. J Biol Chem. 271: 289-94, 1996.
    Lustbader JW, Birken S, Pollak S, Pound A, Chait BT, Mirza UA, Ramnarain S, Canfield RE, Brown JM.: Expression of human chorionic gonadotropin uniformly labeled with NMR isotopes in Chinese hamster ovary cells: an advance toward rapid determination of glycoprotein structures. J Biomol NMR. 7: 295-304, 1996.
    Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM.: Heterologous protein production using the Pichia pastoris expression system. Yeast. 22: 249-70, 2005.
    Marcinkiewicz C.: Functional characteristic of snake venom disintegrins: potential therapeutic implication. Curr Pharm. 11: 815-27, 2005.
    Marcinkiewicz C, Calvete JJ, Vijay-Kumar S, Marcinkiewicz MM, Raida M, Schick P, Lobb RR, Niewiarowski S.: Structural and functional characterization of EMF10, a heterodimeric disintegrin from Eristocophis macmahoni venom that selectively inhibits alpha 5 beta 1 integrin. Biochemistry. 38: 13302-9, 1999.
    Marcinkiewicz C, Vijay-Kumar S, McLane MA, Niewiarowski S.: Significance of RGD loop and C-terminal domain of echistatin for recognition of alphaIIb beta3 and alpha(v) beta3 integrins and expression of ligand-induced binding site. Blood. 90: 1565-75, 1997.
    Martin KH, Slack JK, Boerner SA, Martin CC, Parsons JT.: Integrin connections map: to infinity and beyond. Science. 296: 1652-3, 2002.
    Marugan JJ, Manthey C, Anaclerio B, Lafrance L, Lu T, Markotan T, Leonard KA, Crysler C, Eisennagel S, Dasgupta M, Tomczuk B.: Design, synthesis, and biological evaluation of novel potent and selective alphavbeta3/alphavbeta5 integrin dual inhibitors with improved bioavailability. Selection of the molecular core. J Med Chem. 48: 926-34, 2005.
    Matter ML, Zhang Z, Nordstedt C, Ruoslahti E.: The alpha5beta1 integrin mediates elimination of amyloid-beta peptide and protects against apoptosis. J Cell Biol. 141: 1019-30, 1998.
    McDowell RS, Dennis MS, Louie A, Shuster M, Mulkerrin MG, Lazarus RA.: Mambin, a potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor structurally related to the short neurotoxins. Biochemistry. 31: 4766-72, 1992.
    McIntosh LP, Wand AJ, Lowry DF, Redfield AG, Dahlquist FW.: Assignment of the backbone 1H and 15N NMR resonances of bacteriophage T4 lysozyme. Biochemistry. 29: 6341-62, 1990.
    McLane MA, Marcinkiewicz C, Vijay-Kumar S, Wierzbicka-Patynowski I, Niewiarowski S.: Viper venom disintegrins and related molecules. Proc Soc Exp Biol Med. 219: 109-19, 1998.
    McLane MA, Sanchez EE, Wong A, Paquette-Straub C, Perez JC.: Disintegrins. Curr Drug Targets Cardiovasc Haematol Disord. 4: 327-55, 2004.
    Minoux H, Chipot C, Brown D, Maigret B.: Structural analysis of the KGD sequence loop of barbourin, an alphaIIbbeta3-specific disintegrin. J Comput Aided Mol Des. 14: 317-27, 2000.
    Monleon D, Esteve V, Kovacs H, Calvete JJ, Celda B.: Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR. Biochem J. 387: 57-66, 2005.
    Monsalve RI, Lu G, King TP.: Expressions of recombinant venom allergen, antigen 5 of yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis), in bacteria or yeast. Protein Expr Purif. 16: 410-6, 1999.
    Morgan WD, Kragt A, Feeney J.: Expression of deuterium-isotope-labelled protein in the yeast Pichia pastoris for NMR studies. J Biomol NMR. 17: 337-47, 2000.
    Morris GM, Goodsell DS, Huey R, Olson AJ.: Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des. 10: 293-304, 1996.
    Mousa SA.: Anti-integrin as novel drug-discovery targets: potential therapeutic and diagnostic implications. Curr Opin Chem Biol. 6: 534-41, 2002.
    Muchmore DC, McIntosh LP, Russell CB, Anderson DE, Dahlquist FW.: Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods Enzymol. 177: 44-73, 1989.
    Nadrah K, Dolenc MS.: Dual antagonists of integrins. Curr Med Chem. 12: 1449-66, 2005.
    Pfaff M, McLane MA, Beviglia L, Niewiarowski S, Timpl R.: Comparison of disintegrins with limited variation in the RGD loop in their binding to purified integrins alpha IIb beta 3, alpha V beta 3 and alpha 5 beta 1 and in cell adhesion inhibition. Cell Adhes Commun. 2: 491-501, 1994.
    Pierschbacher MD, Ruoslahti E.: Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem. 262: 17294-8, 1987.
    Plow EF, Haas TA, Zhang L, Loftus J, Smith JW.: Ligand binding to integrins. J Biol Chem. 275: 21785-8, 2000.
    Rahman S, Aitken A, Flynn G, Formstone C, Savidge GF.: Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation. Biochem J. 335: 247-57, 1998.
    Ramesh V, Frederick RO, Syed SE, Gibson CF, Yang JC, Roberts GC.: The interactions of Escherichia coli trp repressor with tryptophan and with an operator oligonucleotide. NMR studies using selectively 15N-labelled protein. Eur J Biochem. 225: 601-608, 1994.
    Rodriguez E, Krishna NR.: An economical method for (15)N/(13)C isotopic labeling of proteins expressed in Pichia pastoris. J Biochem. 130: 19-22, 2001.
    Roivainen M, Piirainen L, Hovi T, Virtanen I, Riikonen T, Heino J, Hyypia T.: Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology. 203: 357-65, 1994.
    Ruouslahti E.: RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 12: 697-715, 1996.
    Scarborough RM, Rose JW, Hsu MA, Phillips DR, Fried VA, Campbell AM, Nannizzi L, Charo IF.: Barbourin: A GPIIb-IIIa specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem. 266: 9359-62, 1991.
    Scarborough RM, Rose JW, Naughton MA, Phillips DR, Nannizzi L, Arfsten A, Campbell AM, Charo IF.: Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem. 268: 1058-65, 1993.
    Shimaoka M, Springer TA.: Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov. 2: 703-16, 2003.
    Shimaoka M, Takagi J, Springer TA.: Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct. 31: 485-516, 2002.
    Siddiqi AR, Persson B, Zaidi ZH, Jornvall H.: Characterization of two platelet aggregation inhibitor-like polypeptides from viper venom. Peptides. 13: 1033-7, 1992.
    Smith JW, Le Calvez H, Parra-Gessert L, Preece NE, Jia X, Assa-Munt N.: Selection and structure of ion-selective ligands for platelet integrin alpha IIb(beta) 3. J Biol Chem. 277: 10298-305, 2002.
    Smith JW, Piotrowicz RS, Mathis D.: A mechanism for divalent cation regulation of beta 3-integrins. J Biol Chem. 269: 960-7, 1994.
    Springer TA, Wang JH.: The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Adv Protein Chem. 68: 29-63, 2004.
    Strauss A, Bitsch F, Cutting B, Fendrich G, Graff P, Liebetanz J, Zurini M, Jahnke W.: Amino-acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells useful for NMR studies. J Biomol NMR. 26: 367-72, 2003.
    Sutcliffe MJ, Jaseja M, Hyde EI, Lu X, Williams JA.: Three-dimensional structure of the RGD-containing neurotoxin homologue dendroaspin. Nat Struct Biol. 1: 802-7, 1994.
    Takagi J, Petre BM, Walz T, Springer TA.: Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 110: 599-11, 2002.
    Tamkun JW, DeSimone DW, Fonda D, Patel RS, Buck C, Horwitz AF, Hynes RO.: Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell. 46: 271-82, 1986.
    Wattam B, Shang D, Rahman S, Egglezou S, Scully M, Kakkar V, Lu X.: Arg-Tyr-Asp (RYD) and Arg-Cys-Asp (RCD) motifs in dendroaspin promote selective inhibition of beta1 and beta3 integrins. Biochem J. 356: 11-7, 2001.
    Wehrle-Haller B, Imhof BA.: Integrin-dependent pathologies. J Pathol. 200: 481-7, 2003.
    White CE, Kempi NM, Komives EA.: Expression of highly disulfide-bonded proteins in Pichia pastoris. Structure. 2: 1003-5, 1994.
    Wierzbicka-Patynowski I, Niewiarowski S, Marcinkiewicz C, Calvete JJ, Marcinkiewicz MM, McLane MA.: Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. J Biol Chem. 274: 37809-14, 1999.
    Wood MJ, Komives EA.: Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation. J Biomol NMR. 13: 149-159, 1999.
    Wright PS, Saudek V, Owen TJ, Harbeson SL, Bitonti AJ.: An echistatin C-terminal peptide activates GPIIbIIIa binding to fibrinogen, fibronectin, vitronectin and collagen type I and type IV. Biochem J. 293: 263-7, 1993.
    Xiao T, Takagi J, Coller BS, Wang JH, Springer TA.: Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature. 432: 59-67, 2004.
    Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA.: Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science. 294: 339-45, 2001.
    Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA.: Crystal structure of the extracellular segment of integrin alphaV beta3 in complex with an Arg-Gly-Asp ligand. Science. 296: 151-5, 2002.
    Xu B, Munoz I IG, Janson JC, Stahlberg J.: Crystallization and X-ray analysis of native and selenomethionyl beta-mannanase Man5A from blue mussel, Mytilus edulis, expressed in Pichia pastoris. Acta Crystallogr D Biol Crystallogr. 58: 542-5, 2002.
    Yang RS, Chiang HS, Tang CH, Yeh CS, Huang TF.: Rhodostomin inhibits thrombin-enhanced adhesion of ROS 17/2.8 cells through the blockade of alphavbeta3 integrin. Toxicon. 46: 387-93, 2005a.
    Yang RS, Tang CH, Chuang WJ, Huang TH, Peng HC, Huang TF, Fu WM.: Inhibition of tumor formation by snake venom disintegrin. Toxicon. 45: 661-9, 2005b.
    Yatohgo T, Izumi M, Kashiwagi H, Hayashi M.: Novel purification of vitronectin from human plasma by heparin affinity chromatography. Cell Struct Funct. 13: 281-92, 1988.
    Yeh CH, Peng HC, Yang RS, Huang TF.: Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Mol Pharmacol. 59: 1333-42, 2001.
    陳金榜 蛋白質在水溶液中之結構-多維異核核磁共振之應用。科儀新知,第十五卷,第六期,40-46,1994。
    郭瑞庭 馬來蝮蛇蛇毒基因的選殖及蛇毒蛋白之功能及三度空間結構之研究。國立成功大學生物化學研究所碩士論文,1998。
    陳彥青 馬來蝮蛇蛇毒蛋白及其突變株的結構與動力學之研究。國立成功大學生物化學研究所碩士論文,2001。
    許家豪 含RGD序列蛋白在辨識組合蛋白上的結構與功能關係之研究。國立成功大學生物化學研究所碩士論文,2003。
    劉祐禎 利用馬來蝮蛇蛇毒蛋白突變株研究在辨識組合蛋白v3和51的結構決定要素。國立成功大學生物化學研究所碩士論文,2004。
    余靖 核磁共振光譜在結構生物學的應用(NMR Applications in Structural Biology): http://bbsc.imb.sinica.edu.tw/biotech/08_10.pdf

    下載圖示 校內:2008-12-28公開
    校外:2008-12-28公開
    QR CODE