簡易檢索 / 詳目顯示

研究生: 張立揚
Chang, Li-Yang
論文名稱: 以磁控濺鍍製作氧化銦鎵薄膜特性及其元件應用
Investigation of Indium Gallium Oxide Thin Film Fabricated by RF Sputtering System and Their Applications
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 98
中文關鍵詞: 延伸式閘極場效電晶體氧化銦鎵光感測器薄膜電晶體
外文關鍵詞: EGFET, InGaO, Photodetector, Thin Film Transistor
相關次數: 點閱:91下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文內容為利用射頻磁控濺鍍法沉積氧化銦鎵薄膜,並將其應用於薄膜電晶體之主動層、光感測器以及酸鹼感測器,並探討其元件特性。
    首先我們在不同氧氣分壓的製程條件下,沉積我們的氧化銦鎵薄膜,並分別探討其薄膜的結構特性、光學特性及表面/縱深分析特性 在結構特性上,表面的結構緻密,且隨著氧分壓的上升,逐漸呈現出和氧化銦一致的晶相;晶相強度顯著增加,也代表其結晶性逐漸變好。藉由XPS的分析也可以發現,薄膜之中的氧空缺由於製程中氧氣通入增加而逐漸減少。在光學特性上,由於鎵的能隙極大,有鎵成份存在於薄膜,使得氧化銦鎵薄膜成為一種寬能隙的材料,主要吸收紫外光波段,並且其對於可見光波段的光都有80% 以上穿透率。表面分析的部份則藉由AFM做量測,可看出由射頻磁控濺鍍法沉積的氧化銦鎵薄膜,表面粗糙度很小,對於薄膜應用於元件的電特性是有利的。
    在實驗的第二部分,我們將氧化銦鎵薄膜應用於光感測器,改變氧流量而比較其對於元件特性的影響。可以見到隨著氧流量的增加,有效抑制暗電流,並讓金半接觸面由歐姆接面轉變為蕭基接面,開關反應時間大幅降低。其中,在氧分壓20%下製作的元件,暗電流降低至8.1 × 10−12安培,響應可達0.31安培/瓦,開/關時間降低至21/27秒。另外我們也改變銦和鎵的比例應用於光感測器作探討,起初,元件的響應大只有10-5 安培/瓦,但在經過退火處理後,薄膜中原子重新排列,最後改善光感測器的響應至10-2 安培/瓦。
    在實驗的第三部分,我們使用二氧化矽做為氧化銦鎵薄膜電晶體的閘極介電層,使用氧化銦:氧化鎵原子比例為9:1的氧化銦鎵靶材,並且藉由調變濺鍍製程中的氧流量以找出對於薄膜電晶體之最佳參數。在室溫下得到場效電子遷移率為434.9 cm2/V∙s,臨界電壓為3.24 V,次臨界擺幅為0.31,開關電流比為5個數量級。此外我們也比較不同氧化銦鎵比例所製作之薄膜電晶體差異,可以得知氧化銦比例過多時,主動層偏向導體,會導致漏電流過大,而使薄膜電晶體無法關閉;另一方面,當氧化鎵含量過多時,則會偏向絕緣體,雖然仍有不錯的開關電流比,但是在子遷移率會非常小;因此氧化銦對於氧化鎵之比例,在製作薄膜電晶體上,是極其重要的一項關鍵。
    在實驗最後一個部份,我們選用低阻值的氧化銦鎵薄膜應用於延伸式閘極酸鹼感測器,量測後可發現銦鎵比例9:1的薄膜,其靈敏度在VD=3的時候可達56.24 uA/pH,在Id=200時可達43.7uA/pH; 皆優於以往所發表過之延伸式閘極酸鹼感測器。

    In this thesis, the indium gallium oxide (InGaO) is deposited by RF magnetron sputtering and the films are applied to photodetectors, thin film transistors and EGFET pH sensors. The properties of the devices are discussed in detail
    First, InGaO films are deposited under different oxygen partial pressure and researched into structural, optical, and surface/depth element analysis. For the structural analysis, the surface of films is dense. With the increasing of oxygen partial pressure, the crystalline phase gradually appears and is consistent with In2O3. The peak intensities increased, indicating that the crystalline qualities are improved. It can also be observed from XPS analysis that the oxygen vacancies decrease as the partial oxygen pressure increases. For the optical analysis, owing to the large bandgap of gallium, InGaO thin films could be used as wide bandgap material, absorbing ultraviolet light. Furthermore, the transmittance in the visible region is more than 80%. For surface/depth element analysis, AFM measurement is used to observe the surface. The smooth surface of the films leads to lower surface density of states, which is beneficial for the performance of the devices.
    Next, InGaO photodetectors are fabricated under various oxygen flow ratios to investigate influence on these devices. The dark current could be suppressed effectively with the increasing oxygen flow. Also, the Ohmic contact is tuned to Schottky contact and the photoresponse time decreases. For the photodetectors fabricated under 20% oxygen partial pressure, dark current can be reduced to 8.1 × 10-12 amps, the response rises to 0.31 amperes / watt, and the photoresponse time is reduced to 21/27 seconds. On the other hand, we also make a research on the different indium to gallium ratio. At first, the responsivity is 10-5 amperes/watt, however, the atoms in the film rearrange after the annealing process and the responsivity rises to about 10-2 amperes/watt.
    In the third part of the experiment, we fabricated InGaO TFT with silicon oxide gate dielectric layer. The optimized parameters of In0.9Ga0.1O TFT is fabricated under pO2= 20%. The field effect mobility is 434.9 cm2/V∙S, Ion/Ioff ratio is 5 order and SS is 0.31V/decade. In addition, we compare the difference of TFTs produced by various indium to gallium ratio targets. When the proportion of indium is too much, the active layer becomes a conductor, leading to large leakage current and the TFR cannot be turned off. On the other hand, when the proportion of gallium is too much, the device becomes dielectric. In this way, the device performs satisfactory Ion/Ioff ratio, but the mobility drops at the same time. Therefore, the ratio of indium to gallium is a very critical point on fabricating TFTs.
    In the last part of the experiment, we apply In0.9Ga0.1O in the extended gate field effect transistors because of its low-resistance. The sensitivity is up to 56.24 uA / pH as VD = 3, 43.7uA / pH as ID = 200. These values are superior to the EGFET published previously.

    摘要 I Abstract IV 誌謝 VII Contents IX Table Captions XII Figure Caption XIII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Overview of InGaO 2 1.3 Overview of UV Photodetector 4 1.4 Overview of Thin Film Transistor 5 1.5 Organization of Thesis 6 Reference 12 Chapter 2 Relevant Theory and Experimental Equipment 15 2.1 Theory of Photodetector 15 2.1.1 Metal-Semiconductor (MS) Contacts 16 2.1.2 Responsivity(R) 17 2.2 Theory of Thin Films Transistors 18 2.2.1 Threshold Voltage (Vth) 19 2.2.2 Field-Effect Mobility 20 2.2.3 On/off current Ratio(IOn/off) 21 2.2.4 Subthreshold swing(SS) 21 2.2.5 Interface Trap Density (Nit) 22 2.3 Theory of EGFET pH Sensor 22 2.4 Experimental Equipment 24 2.4.1 RF Sputtering System 24 2.4.2 Plasma-enhanced chemical vapor deposition (PECVD) 26 2.4.3 X-ray photoelectron spectroscopy (XPS) 27 2.4.4 Energy-dispersive X-ray Spectroscopy (EDS) 27 2.4.5 X-ray Diffraction Analysis (XRD) 28 2.4.6 Atomic Force Microscopes (AFM) 29 2.4.7 Secondary Ion Mass Spectrometry (SIMS) 30 2.4.8 Measurement Equipment 31 Reference 37 Chapter 3 Characteristics of InGaO thin film 39 3.1 Growth of InGaO Thin Film 39 3.2 Structural Characteristics 40 3.2.1 X-Ray Diffraction (XRD) Analysis 40 3.2.2 Atomic Force Microscopes (AFM) Analysis 40 3.2.3 Scanning Electron Microscope (SEM) Analysis 41 3.3 Optical Characteristics 41 3.4 Elemental Analysis 42 3.4.1 SIMS and EDS Analysis 42 3.4.2 XPS Analysis 42 Reference 51 Chapter 4 The Fabrication and Characteristics of InGaO MSM UV Photodetector 52 4.1 Introduction 52 4.2 Fabrication of InGaO MSM Photodetectors 53 4.3 Characteristics of InGaO MSM photodetectors 54 4.4 Summary of InGaO MSM Photodetectors 57 Reference 67 Chapter 5 The Fabrication and Characteristics of InGaO Thin Film Transistors 70 5.1 Introduction 70 5.2 Fabrication and Measurement of InGaO Thin Film Transistor 71 5.3 Electrical Properties of the InGaO Thin Film Transistors 71 5.4 Electrical Properties of the InGaO Phototransistors 73 5.5 Summary of InGaO Thin Film Transistors 74 Reference 81 Chapter 6 The Fabrication and Characteristics of InGaO EGFET pH Sensors 84 6.1 Introduction 84 6.2 Fabrication and Measurement of InGaO EGFET pH Sensors 85 6.3 Characteristics of InGaO EGFET pH Sensors 85 6.4 Summary of InGaO EGFET pH Sensors 86 Reference 92 Chapter 7 Conclusion and future work 95 7.1 Conclusion 95 7.2 Future Work 97 7.2.1 High-k dielectric 97 Reference 98

    Chapter1
    [1]Minami, T., & Miyata, T. (2008). Present status and future prospects for development of non-or reduced-indium transparent conducting oxide thin films. Thin Solid Films, 517(4), 1474-1477.
    [2]Shelke, V., Sonawane, B. K., Bhole, M. P., & Patil, D. S. (2009). Effect of annealing temperature on the optical and electrical properties of aluminum doped ZnO films. Journal of Non-Crystalline Solids, 355(14), 840-843.
    [3]Lee, K. I., Kim, E. K., Kim, H. D., Kang, H. I., & Song, J. T. (2008). Low temperature Al doped ZnO films on a flexible substrate by DC sputtering. physica status solidi (c), 5(10), 3344-3347.
    [4]Minami, T. (2005). Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology, 20(4), S35.
    [5]Hamberg, I., & Granqvist, C. G. (1986). Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows. Journal of Applied Physics, 60(11), R123-R160.
    [6]Chen, H., Liu, K., Hu, L., Al-Ghamdi, A. A., & Fang, X. (2015). New concept ultraviolet photodetectors. Materials Today, 18(9), 493-502.
    [7]Liao, M., Sang, L., Teraji, T., Imura, M., Alvarez, J., & Koide, Y. (2012). Comprehensive investigation of single crystal diamond deep-ultraviolet detectors. Japanese Journal of Applied Physics, 51(9R), 090115.
    [8]Munoz, E., Monroy, E., Pau, J. L., Calle, F., Omnes, F., & Gibart, P. (2001). III nitrides and UV detection. Journal of Physics: Condensed Matter, 13(32), 7115.
    [9]Pandey, S. K., Awasthi, V., Verma, S., & Mukherjee, S. (2014). Blue electroluminescence from Sb-ZnO/Cd-ZnO/Ga-ZnO heterojunction diode fabricated by dual ion beam sputtering. Optics express, 22(25), 30983-30991.
    [10]Sandvik, P., Mi, K., Shahedipour, F., McClintock, R., Yasan, A., Kung, P., & Razeghi, M. (2001). Al x Ga 1− x N for solar-blind UV detectors. Journal of crystal growth, 231(3), 366-370.
    [11]Lin, C. H., & Liu, C. W. (2010). Metal-insulator-semiconductor photodetectors. Sensors, 10(10), 8797-8826.
    [12]Monroy, E., Omnès, F., & Calle, F. (2003). Wide-bandgap semiconductor ultraviolet photodetectors. Semiconductor Science and Technology, 18(4), R33.
    [13]Omnès, F., Monroy, E., Muñoz, E., & Reverchon, J. L. (2007, February). Wide bandgap UV photodetectors: A short review of devices and applications. In Integrated Optoelectronic Devices 2007 (pp. 64730E-64730E). International Society for Optics and Photonics.
    [14]International Commission on Non-Ionizing Radiation Protection. (2004). Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Physics, 87(2), 171-186.
    [15]Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., & Hosono, H. (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432(7016), 488-492.
    [16]Lu, H. H., Ting, H. C., Shih, T. H., Chen, C. Y., Chuang, C. S., & Lin, Y. (2010, May). 76.3: 32‐inch LCD Panel Using Amorphous Indium‐Gallium‐Zinc‐Oxide TFTs. In SID Symposium Digest of Technical Papers (Vol. 41, No. 1, pp. 1136-1138). Blackwell Publishing Ltd.
    [17]Mo, Y. G., Kim, M., Kang, C. K., Jeong, J. H., Park, Y. S., Choi, C. G., ... & Kim, S. S. (2011). Amorphous‐oxide TFT backplane for large‐sized AMOLED TVs. Journal of the Society for Information Display, 19(1), 16-20.
    [18]Ito, M., Miyazaki, C., Ishizaki, M., Kon, M., Ikeda, N., Okubo, T., ... & Sekine, N. (2008). Application of amorphous oxide TFT to electrophoretic display. Journal of Non-Crystalline Solids, 354(19), 2777-2782.
    [19]Kamiya, T., & Hosono, H. (2010). Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Materials, 2(1), 15-22.
    [20]Nomura, K., Kamiya, T., Ohta, H., Hirano, M., & Hosono, H. (2008). Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O 2 annealing. Applied Physics Letters, 93(19), 192107.
    [21]Kuo, A., Won, T. K., & Kanicki, J. (2008). Advanced multilayer amorphous silicon thin-film transistor structure: Film thickness effect on its electrical performance and contact resistance. Japanese Journal of Applied Physics, 47(5R), 3362.
    Chapter2
    [1]E. H. Rhoderick, R. H. Williams. (1998). Metal-Semiconductor Contacts, Clarendon Press. Oxford.
    [2]S. M. Sze (1985). Semiconductor Device Physics and Technology, pp. 160
    [3]Ding, X., Zhang, H., Zhang, J., Li, J., Shi, W., Jiang, X., & Zhang, Z. (2015). IGZO thin film transistors with Al2O3 gate insulators fabricated at different temperatures. Materials Science in Semiconductor Processing, 29, 69-75.
    [4]Hwang, S., Lee, J. H., Woo, C. H., Lee, J. Y., & Cho, H. K. (2011). Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors. Thin Solid Films, 519(15), 5146-5149.
    [5]Bergveld, P. (2003, October). ISFET, theory and practice. In IEEE Sensor Conference, Toronto (Vol. 328).
    [6]Chou, J. C., & Chen, C. W. (2009). Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs. IEEE Sensors Journal, 9(3), 277-284.
    [7]Yates, D. E., Levine, S., & Healy, T. W. (1974). Site-binding model of the electrical double layer at the oxide/water interface. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 70, 1807-1818.
    [8]Van der Ziel, A. (1986). Noise in solid state devices and circuits. Wiley-Interscience.
    [9]Reynolds, D. C., Look, D. C., Jogai, B., Litton, C. W., Collins, T. C., Harsch, W., & Cantwell, G. (1998). Neutral-donor–bound-exciton complexes in ZnO crystals. Physical Review B, 57(19), 12151.
    [10]Monroy, E., Calle, F., Munoz, E., Omnes, F., Gibart, P., & Munoz, J. A. (1998). Al x Ga 1− x N: Si schottky barrier photodiodes with fast response and high detectivity. Applied physics letters, 73(15), 2146-2148.
    [11]Neamen, D. A. (2003). Semiconductor physics and devices. McGraw-Hill Higher Education.
    [12]J. L. Vossen and W. Kern, (1978). Thin Flim Processes, Academic Press, New York, pp. 131,
    [13]Chen, W. T., Lo, S. Y., Kao, S. C., Zan, H. W., Tsai, C. C., Lin, J. H., ... & Lee, C. C. (2011). Oxygen-dependent instability and annealing/passivation effects in amorphous In–Ga–Zn–O thin-film transistors. IEEE Electron Device Letters, 32(11), 1552-1554.
    [14]Ide, K., Kikuchi, Y., Nomura, K., Kimura, M., Kamiya, T., & Hosono, H. (2011). Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors. Applied Physics Letters, 99(9), 093507.
    [15]Chang, C. Y. (1996). ULSI technology. McGraw-Hill.
    [16]Bae, H. S., Kwon, J. H., Chang, S., Chung, M. H., Oh, T. Y., Park, J. H., ... & Ju, B. K. (2010). The effect of annealing on amorphous indium gallium zinc oxide thin film transistors. Thin Solid Films, 518(22), 6325-6329.
    Chapter3
    [1]Cheng, Z. X., Ren, X. H., Xu, J. Q., & Pan, Q. Y. (2011). Mesoporous In 2 O 3: effect of material structure on the gas sensing. Journal of Nanomaterials, 2011, 29.
    [2]Han, S., Zhang, Z., Zhang, J., Wang, L., Zheng, J., Zhao, H., ... & Shan, C. (2011). Photoconductive gain in solar-blind ultraviolet photodetector based on Mg0. 52Zn0. 48O thin film. Applied Physics Letters, 99(24), 242105.
    [3]Remashan, K., Hwang, D. K., Park, S. D., Bae, J. W., Yeom, G. Y., Park, S. J., & Jang, J. H. (2008). Effect of N2O plasma treatment on the performance of ZnO TFTs. Electrochemical and Solid-State Letters, 11(3), H55-H59.
    Chapter4
    [1]Monroy, E., Omnès, F., & Calle, F. (2003). Wide-bandgap semiconductor ultraviolet photodetectors. Semiconductor Science and Technology, 18(4), R33.
    [2]Guo, F., Yang, B., Yuan, Y., Xiao, Z., Dong, Q., Bi, Y., & Huang, J. (2012). A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nature nanotechnology, 7(12), 798-802.
    [3]Xie, Y., Wei, L., Li, Q., Chen, Y., Yan, S., Jiao, J., ... & Mei, L. (2014). High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays. Nanotechnology, 25(7), 075202.
    [4]Chen, C. H., Chang, S. J., Chang, S. P., Li, M. J., Chen, I. C., Hsueh, T. J., & Hsu, C. L. (2009). Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction. Chemical Physics Letters, 476(1), 69-72.
    [5]Chen, H., Liu, K., Hu, L., Al-Ghamdi, A. A., & Fang, X. (2015). New concept ultraviolet photodetectors. Materials Today, 18(9), 493-502.
    [6]Sang, L., Liao, M., & Sumiya, M. (2013). A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors, 13(8), 10482-10518.
    [7]Oshima, T., & Fujita, S. (2008). Properties of Ga2O3‐based (InxGa1–x) 2O3 alloy thin films grown by molecular beam epitaxy. physica status solidi (c), 5(9), 3113-3115.
    [8]Oshima, T., Okuno, T., Arai, N., Suzuki, N., Ohira, S., & Fujita, S. (2008). Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates. Applied physics express, 1(1), 011202.
    [9]Ji, Z., Du, J., Fan, J., & Wang, W. (2006). Gallium oxide films for filter and solar-blind UV detector. Optical Materials, 28(4), 415-417.
    [10]von Wenckstern, H., Splith, D., Purfürst, M., Zhang, Z., Kranert, C., Müller, S., ... & Grundmann, M. (2015). Structural and optical properties of (In, Ga)2O3 thin films and characteristics of Schottky contacts thereon. Semiconductor Science and Technology, 30(2), 024005.
    [11]Chang, T. H., Chang, S. J., Weng, W. Y., Chiu, C. J., & Wei, C. Y. (2015). Amorphous Indium–Gallium–Oxide UV Photodetectors. IEEE Photonics Technology Letters, 27(19), 2083-2086.
    [12]Poti, B., Todaro, M. T., Frassanito, M. C., Pomarico, A., Passaseo, A., Lomascolo, M., ... & De Vittorio, M. (2003). High responsivity GaN-based UV detectors. Electronics Letters, 39(24), 1747-1749.
    [13]Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P. R., Park, J., ... & Wang, D. (2007). ZnO nanowire UV photodetectors with high internal gain. Nano letters, 7(4), 1003-1009..
    [14]Guo, D. Y., Wu, Z. P., An, Y. H., Guo, X. C., Chu, X. L., Sun, C. L., ... & Tang, W. H. (2014). Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors. Applied Physics Letters, 105(2), 023507.
    [15]Li, C., Bando, Y., Liao, M., Koide, Y., & Golberg, D. (2010). Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Applied Physics Letters, 97(16), 161102.
    [16]Hwang, J. D., Lin, J. S., & Hwang, S. B. (2015). Annealing effects on MgZnO films and applications in Schottky-barrier photodetectors. Journal of Physics D: Applied Physics, 48(40), 405103.
    [17]Yu, J., Tian, N., Deng, Y. F., & Zhang, H. H. (2016). Ultraviolet photodetector based on sol–gel synthesized MgZnO nanoparticle with photoconductive gain. Journal of Alloys and Compounds, 667, 359-362.
    [18]Kokubun, Y., Miura, K., Endo, F., & Nakagomi, S. (2007). Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors. Applied physics letters, 90(3), 031912.
    [19]Oshima, T., Okuno, T., & Fujita, S. (2007). Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Japanese Journal of Applied Physics, 46(11R), 7217.
    [20]Feng, Q., Huang, L., Han, G., Li, F., Li, X., Fang, L., ... & Guo, D. (2016). Comparison Study of β-Ga2O3 Photodetectors on Bulk Substrate and Sapphire. IEEE Transactions on Electron Devices, 63(9), 3578-3583.
    Chapter5
    [1]Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., & Hosono, H. (2003). Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 300(5623), 1269-1272.
    [2]Fortunato, E. M., Pimentel, A. C. M. B. G., Gonçalves, A. M. F., Marques, A. J. S., Pereira, L. M. N., & Martins, R. F. P. (2005). Fully Transparent ZnO Thin‐Film Transistor Produced at Room Temperature. Advanced Materials, 17(5), 590-594.
    [3]Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., & Hosono, H. (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432(7016), 488-492.
    [4]Kwon, J. Y., Son, K. S., Jung, J. S., Kim, T. S., Ryu, M. K., Park, K. B., ... & Lee, S. Y. (2008). Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display. IEEE Electron Device Letters, 29(12), 1309-1311.
    [5]Lee, J. S., Chang, S., Koo, S. M., & Lee, S. Y. (2010). High-Performance a-IGZO TFT With ZrO2 Gate Dielectric Fabricated at Room Temperature. IEEE Electron Device Letters, 31(3), 225-227.
    [6]Chong, E., Chun, Y. S., & Lee, S. Y. (2010). Amorphous silicon–indium–zinc oxide semiconductor thin film transistors processed below 150 C. Applied Physics Letters, 97(10), 102102.
    [7]Cheng, H. C., & Tsay, C. Y. (2010). Flexible a-IZO thin film transistors fabricated by solution processes. Journal of Alloys and Compounds, 507(1), L1-L3.
    [8]Tomai, S., Nishimura, M., Itose, M., Matuura, M., Kasami, M., Matsuzaki, S., ... & Yano, K. (2012). High-performance thin film transistor with amorphous In2O3–SnO2–ZnO channel layer. Japanese Journal of Applied Physics, 51(3S), 03CB01.
    [9]Esro, M., Vourlias, G., Somerton, C., Milne, W. I., & Adamopoulos, G. (2015). High‐Mobility ZnO Thin Film Transistors Based on Solution‐processed Hafnium Oxide Gate Dielectrics. Advanced Functional Materials, 25(1), 134-141.
    [10]Kim, Y. G., Kim, T., Avis, C., Lee, S. H., & Jang, J. (2016). Stable and high-performance indium oxide thin-film transistor by Ga doping. IEEE Transactions on Electron Devices, 63(3), 1078-1084.
    [11]Nayak, P. K., Hedhili, M. N., Cha, D., & Alshareef, H. N. (2013). High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric. Applied Physics Letters, 103(3), 033518.
    [12]Noh, J. H., Ryu, S. Y., Jo, S. J., Kim, C. S., Sohn, S. W., Rack, P. D., ... & Baik, H. K. (2010). Indium oxide thin-film transistors fabricated by RF sputtering at room temperature. IEEE Electron Device Letters, 31(6), 567-569.
    [13]Zhang, H. Z., Cao, H. T., Chen, A. H., Liang, L. Y., Liu, Z. M., & Wan, Q. (2010). Enhancement of electrical performance in In2O3 thin-film transistors by improving the densification and surface morphology of channel layers. Solid-State Electronics, 54(4), 479-483.
    [14]Mitoma, N., Aikawa, S., Gao, X., Kizu, T., Shimizu, M., Lin, M. F., ... & Tsukagoshi, K. (2014). Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies. Applied Physics Letters, 104(10), 102103.
    [15]Hong, W. K., Kim, B. J., Kim, T. W., Jo, G., Song, S., Kwon, S. S., ... & Lee, T. (2008). Electrical properties of ZnO nanowire field effect transistors by surface passivation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313, 378-382.
    Chapter6
    [1]Bergveld, P. (1970). Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering, (1), 70-71.
    [2]Yin, L. T., Chou, J. C., Chung, W. Y., Sun, T. P., & Hsiung, S. K. (2000). Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate. Sensors and Actuators B: Chemical, 71(1), 106-111.
    [3]Snee, P. T., Somers, R. C., Nair, G., Zimmer, J. P., Bawendi, M. G., & Nocera, D. G. (2006). A ratiometric CdSe/ZnS nanocrystal pH sensor. Journal of the American Chemical Society, 128(41), 13320-13321.
    [4]Kang, B. S., Wang, H. T., Ren, F., Pearton, S. J., Morey, T. E., Dennis, D. M., ... & Linthicum, K. J. (2007). Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN∕GaN high electron mobility transistors. Applied Physics Letters, 91(25), 252103.
    [5]Yin, L. T., Lin, Y. T., Leu, Y. C., & Hu, C. Y. (2010). Enzyme immobilization on nitrocellulose film for pH-EGFET type biosensors. Sensors and Actuators B: Chemical, 148(1), 207-213.
    [6]Chang, S. P., Li, C. W., Chen, K. J., Chang, S. J., Hsu, C. L., Hsueh, T. J., & Hsueh, H. T. (2012). ZnO-nanowire-based extended-gate field-effect-transistor pH sensors prepared on glass substrate. Science of Advanced Materials, 4(11), 1174-1178.
    [7]Chang, S. P., & Yang, T. H. (2012). Sensing performance of EGFET pH sensors with CuO nanowires fabricated on glass substrate. Int J Electrochem Sci, 7(6), 5020-5027.
    [8]Chiu, Y. S., Tseng, C. Y., & Lee, C. T. (2012). Nanostructured EGFET pH sensors with surface-passivated ZnO thin-film and nanorod array. IEEE Sensors Journal, 12(5), 930-934.
    [9]Lee, P. Y., Chang, S. P., Kuo, P. J., Hsu, E. H., Chang, S. J., & Shei, S. C. (2013). Sensing performance of egfet ph sensors with cztse nanoparticles fabricated on glass substrates. Int. J. Electrochem. Sci, 8, 3866-3875.
    [10]Kao, C. H., Chen, H., Wang, J. C., Chu, Y. C., Lai, C. S., Lin, S. P., ... & Ou, J. C. (2014). Deposition of High-k Samarium Oxide Membrane on Polysilicon for the Extented-Gate Field-Effect Transistor (EGFET) Applications. Journal of New Materials for Electrochemical Systems, 17(1).
    [11]Yao, P. C., Chiang, J. L., & Lee, M. C. (2014). Application of sol–gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor. Solid State Sciences, 28, 47-54.
    [12]Sabah, F. A., Ahmed, N. M., Hassan, Z., & Al-Hardan, N. H. (2016). Sensitivity of CuS and CuS/ITO EGFETs implemented as pH sensors. Applied Physics A, 122(9), 839.
    [13]Sabah, F. A., Ahmed, N. M., Hassan, Z., & Almessiere, M. A. (2016). Effect of Light on the Sensitivity of CuS Thin Film EGFET Implemented as pH Sensor. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 11(6), 4380-4388.
    [14]Li, J. Y., Chang, S. P., Chang, S. J., & Tsai, T. Y. (2014). Sensitivity of EGFET pH sensors with TiO2 nanowires. ECS Solid State Letters, 3(10), P123-P126.
    [15]Chang, S. P., & Chen, K. J. (2014). Beta-Gallium Oxide Nanowire Extended Gate Field Effect Transistor pH Sensors Prepared Using Furnace-Oxidized Gallium Nitride Thin Films. Nanoscience and Nanotechnology Letters, 6(10), 914-917.
    [16]Wu, Y. L., Chang, S. P., Chang, S. J., Weng, W. Y., & Lin, Y. H. (2015). A Novel pH Sensor Using Extended-Gate Field-Effect Transistors with Ga2O3 Nanowires Fabricated on SiO2/Si Template. Science of Advanced Materials, 7(3), 475-478.
    Chapter7
    [1]Lan, L., & Peng, J. (2011). High-performance indium–gallium–zinc oxide thin-film transistors based on anodic aluminum oxide. IEEE Transactions on Electron Devices, 58(5), 1452-1455.
    [2]Zhang, X. H., Domercq, B., Wang, X., Yoo, S., Kondo, T., Wang, Z. L., & Kippelen, B. (2007). High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD). Organic Electronics, 8(6), 718-726.
    [3]Cheng, C. C., Chien, C. H., Luo, G. L., Liu, J. C., Kei, C. C., Liu, D. R., ... & Chang, C. Y. (2008). Characteristics of atomic-layer-deposited Al2O3 high-k dielectric films grown on Ge substrates. Journal of The Electrochemical Society, 155(10), G203-G208.
    [4]Suh, D. C., Cho, Y. D., Kim, S. W., Ko, D. H., Lee, Y., Cho, M. H., & Oh, J. (2010). Improved thermal stability of Al2O3/HfO2/Al2O3 high-k gate dielectric stack on GaAs. Applied Physics Letters, 96(14), 142112.

    下載圖示 校內:2021-12-11公開
    校外:2021-12-11公開
    QR CODE