簡易檢索 / 詳目顯示

研究生: 黃昱齊
Huang, Yu-Chi
論文名稱: p型及n型氮化鎵奈米柱發光二極體元件之製作
Fabrication of p-type/n-type Gallium Nitride Nanorods Light-Emitting Diode Devices
指導教授: 洪昭南
Hong, Zhao-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 108
中文關鍵詞: 電漿輔助化學氣相沉積奈米柱氮化鎵p-n接面發光二極體
外文關鍵詞: plasma-enhanced chemical vapor deposition, nanorods, gallium nitride, p-n junction, light-emitting diodes (LED)
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鎵為直接能隙而且為寬能隙之半導體材料,其能隙約為3.4eV,此極佳之光電材料特性常被製做成發光二極體、雷射二極體、光感測元件、高載子遷移率電晶體等元件,一維奈米結構具有高比表面積以及高深寬比等優點,可降低氮化鎵薄膜和基板之間因為晶格不匹配所造成的應力,並且可避免傳統薄膜之龜裂問題;本研究將採用實驗室自行開發之爐管型電漿輔助化學氣相沉積法之系統,以自組裝之成長機制成長一維氮化鎵奈米柱用於發光二極體元件。
    本研究沿用先前本實驗室之經驗,以鎂、矽做為摻雜元素使氮化鎵具有p型及n型之特性。首先於p^+Si(100)基板上成長出p型氮化鎵奈米柱晶體,藉由調控鎂載流氣體流量以及微調晶體品質,並且透過光致螢光光譜圖確認是否成長出高品質p型氮化鎵奈米柱,接著二次成長n型氮化鎵於p型氮化鎵奈米柱上,藉由微調氮電漿和鎵金屬之蒸氣壓,並且透過掃描式電子顯微鏡以及光致螢光光譜圖,確認二次成長完之氮化鎵奈米柱之外觀結構與晶體品質,將成長完成之氮化鎵奈米柱製作成發光二極體元件,量測其電壓-電流曲線特性圖可觀察到具有整流特性,當施加於元件電壓為11V時,元件瞬間產生亮光並隨即消失,推測可能是奈米柱底部電流密度過大導致元件燒毀。
    為了使奈米柱底部面積增加使電流密度下降,本實驗將具有P-N接面的p型及n型氮化鎵奈米柱成長於二氧化矽基板上,之後利用氫氟酸蝕刻基板,將元件從基板上剝離並轉移至其他基板上,使奈米柱底部露出較大面積,藉此增加奈米柱底部與電極接觸面積降低電流密度,避免電流密度過大導致元件燒毀,元件轉移後進行電性量測,當順向偏壓為7.5V時,電流約為0.048A時,電流隨著電壓上升而下降,在量測這組元件時發現無電致發光之現象。推測可能是PI絕緣層經過烘烤後產生微小之龜裂而造成漏電路徑,或是在鍍上電極時,電極與n型氮化鎵接觸導致漏電路徑產生,或是每層本身之缺陷而造成非輻射性復合,使元件無法產生電致發光之現象。

    Gallium nitride is a semiconductor material with the direct and wide band gap. This excellent photoelectric material characteristic is usually made into a light-emitting diode. This research will use the self-developed plasma-enhanced chemical vapor deposition (PECVD) system to grow the one-dimensional gallium nitride nanorods for use in a self-assembled growth mechanism. GaN nanorods with the p-n junction was fabricated into a LED devices, and its voltage-current curve was measured. The I-V curve can be observed to have rectification characteristics. When device is applied to a forward bias of 11 volt, the devices instantly produces bright light and then disappears. In order to increase the area of the bottom surface of the nanorods and reduce the current density. A p-n junction was grown on a silicon dioxide substrate and transferred to other substrates to expose a large area at the bottom of the nanorods. No electroluminescence phenomenon is found when measuring this devices after do the electrical test.

    中文摘要 I 英文延伸摘要 III 致謝 IX 目錄 X 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1前言 1 1-2奈米材料 3 1-3研究動機 4 第二章 理論基礎與文獻回顧 6 2-1氮化鎵之特性 6 2-1-1氮化鎵之基本結構與性質 7 2-1-2成長氮化鎵之基板 10 2-1-3 n型氮化鎵 12 2-1-4 p型氮化鎵 14 2-2 一維氮化鎵奈米結構之成長 16 2-2-1自組裝成長氮化鎵奈米柱 17 2-3 p-n接面 20 2-4 電漿理論 23 2-4-1電漿定義與特性 23 2-4-2 電介質放電 29 2-5 元件移轉技術 31 第三章 實驗步驟與方法 37 3-1 實驗流程 37 3-2 實驗設備 38 3-2-1 爐管型電漿輔助化學氣相沉積系統 38 3-2-2 三區段式加熱區間高溫爐 39 3-2-3 石英管反應腔體 39 3-2-4 氧化鋁材料 40 3-2-5 電漿電源供應器 40 3-2-6 抽氣系統 40 3-2-7 壓力監控系統 41 3-2-8 流量控制系統 41 3-2-9 氧電漿系統 41 3-3 實驗材料 43 3-3-1 實驗氣體 43 3-3-2 基板材料 43 3-3-3 真空管件材料 44 3-3-4 化學藥品 44 3-3-5 金屬遮罩 45 3-4 實驗步驟 45 3-4-1 成長p-n接面氮化鎵奈米柱 45 3-4-1-1 基板前處理 45 3-4-1-2 利用爐管型PECVD系統成長p型氮化鎵奈米柱 46 3-4-1-3 製作基板保護層 47 3-4-1-4 利用爐管型PECVD系統二次成長n型氮化鎵奈米柱 48 3-4-1-5 氮化鎵發光二極體元件製作 49 3-4-2 元件移轉技術 50 3-4-2-1 基板前處理 50 3-4-2-2 利用PECVD系統於二氧化矽基板上成長p型氮化鎵奈米柱 50 3-4-2-3 製作基板保護層 51 3-4-2-4 利用爐管型PECVD系統二次成長n型氮化鎵奈米柱 52 3-4-2-5 元件移轉及元件製作 53 3-5 實驗分析 54 3-5-1 掃描式電子顯微鏡 54 3-5-2 光致螢光光譜儀 56 3-5-3 電性量測系統 57 第四章 結果與討論 58 4-1 於矽基板上成長p型氮化鎵 58 4-1-1調控鎂摻雜濃度 59 4-1-2微調晶體品質 64 4-2兩階段成長p-n接面氮化鎵奈米住 69 4-2-1 絕緣層製作 69 4-2-2 二次成長n型氮化鎵 72 4-3製作氮化鎵奈米柱發光二極體元件 77 4-3-1 氮化鎵奈米柱發光二極體元件製作 77 4-3-2 氮化鎵奈米柱發光二極體元件之電性量測 84 4-4製作氮化鎵奈米住發光二極體元件 87 4-4-1 於二氧化矽基板成長p型氮化鎵奈米柱 89 4-4-2 製作絕緣層 91 4-4-3 二次成長n型氮化鎵於p型氮化鎵奈米柱之上 92 4-4-4 聚醯亞胺之塗佈 94 4-4-5 元件移轉與電性量測 95 第五章 結論與未來展望 99 5-1 結論 99 5-2 未來展望 101 第六章 參考文獻 102

    1. U.S. Energy Information Administration, How much electricity is used for lighting in the United States? Available from: https://www.eia.gov/tools/faqs/faq.php?id=99&t=3
    2. Owen Comstock and Kevin Jarzomski (2014), LED bulb efficiency expected to continue improving as cost declines. Available from: https://www.eia.gov/todayinenergy/detail.php?id=15471
    3. 馬遠榮(2004),低維奈米材料. Available from: https://scitechvista.nat.gov.tw/c/s93r.htm
    4. Moon Sung Kang, Chul-Ho Lee, Jun Beom Park, Hyobin Yoo, and Gyu-Chul Yi , “Gallium nitride nanostructures for light-emitting diode applications.”, Nano Energy ,Vol. 1, No. 3, pp. 391-400, 2012.
    5. O Ambacher, “Growth and applications of Group III-nitrides.”, Journal of Physics D: Applied Physics, Vol. 31, No. 20, pp. 2653-2710, 1998.
    6. www.LightEmittingDiode.org, Chapter 12: Visible-spectrum LEDs. Available from: https://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap12/chap12.htm
    7. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys.”, JOURNAL OF APPLIED PHYSICS, Vol. 89, No. 11, pp. 5815-5875, 2001.
    8. Feng Shi, “GaN Nanowires Fabricated by Magnetron Sputtering Deposition.” . Available from: https://www.intechopen.com/books/nanowires-fundamental-research/gan-nanowires-fabricated-by-magnetron-sputtering-deposition
    9. L. Liu, and J.H. Edgar, “Substrates for gallium nitride epitaxy.”, Materials Science and Engineering R, Vol. 37, No. 3, pp. 61-127, 2002.
    10. www.LightEmittingDiode.org. Available from: https://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/
    11. H. Morkoc, “Nitride semiconductors and devices.”, Berlin:Springer-Verlag, 1999.
    12. Shuji Nakamura, “GaN Growth Using GaN Buffer Layer.”, Japanese Journal of Applied Physics, Vol. 30, No. 10A, pp. L1705-L1707, 1991.
    13. Raffaella Calarco, Michel Marso, Thomas Richter, Ali I. Aykanat, Ralph Meijers, et al., “size-depentent photoconductivity in MBE-grown GaN-nanowires.”, Nano Letters, Vol. 5, No. 5, pp. 981-984, 2005.
    14. N. A. Sanford, P. T. Blanchard, K. A. Bertness, L. Mansfield, et al., “steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy.”, JOURNAL OF APPLIED PHYSICS, Vol. 107, No. 3, pp. 034318, 2010.
    15. J K Sheu, and G C Chi, “The doping process and dopant characteristics of GaN.”, JOURNAL OF PHYSICS: CONDENSED MATTER, Vol. 14, No. 22, pp. R657-R702, 2002.
    16. E. Monroy, T. Andreev, and P. Holliger, “Modification of GaN(0001) growth kinetics by Mg doping.”, APPLIED PHYSICS LETTERS, Vol. 84, No. 14, pp. 2554-2556, 2004
    17. E. Cimpoiasu, et al., “The effect of Mg doping on GaN nanowires.”, NANOTECHNOLOGY, Vol. 17, No. 23, pp. 5735-5739, 2006.
    18. Guosheng Cheng, Andrei Kolmakov, Youxiang Zhang, Martin Moskovitsa, et al. , “Current rectification in a single GaN nanowire with a well-defined p–n junction.”, APPLIED PHYSICS LETTERS, Vol. 83, No. 8, pp. 1578-1580, 2003.
    19. Zhaohui Zhong, Fang Qian, Deli Wang, and Charles M. Lieber, “Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices.”, NANOLETTERS, Vol. 3, No. 3, pp. 343-346, 2003.

    20. J. R. Soulen, P. Sthapitanonda, and J. L. Margrave, “VAPORIZATION OF INORGANIC SUBSTANCES : B203, TeOz AND Mg3N2.”, JOURNAL OF PHYSICAL CHEMISTRY, Vol. 59, No. 2, pp. 132-136, 1955.
    21. D. Zubia, and S. D. Hersee, “ Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials.”, JOURNAL OF APPLIED PHYSICS, Vol. 85, No, 9, pp. 6492-9496, 1999.
    22. Andreas Waag, et al., “The nanorod approach: GaN NanoLEDs for solid state lighting.”, Phys. Status Solidi C, Vol. 8, No. 7-8, pp. 2296-2301, 2011.
    23. Shunfeng Li, and Andreas Waag, “GaN based nanorods for solid state lighting.”, JOURNAL OF APPLIED PHYSICS, Vol. 111, No. 7, pp. 071101, 2012.
    24. Masaki Yoshizawa, Akihiko Kikuchi, Nobuhiko Fujita, et al., “Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks.”, Journal of Crystal Growth, Vol. 189, pp. 138-141, 1998.
    25. K.A. Bertness, A. Roshko, N.A. Sanford, J.M. Barker, and A.V. Davydov, “Spontaneously grown GaN and AlGaN nanowires.”, Journal of Crystal Growth, Vol. 287, No. 2, pp. 522-527, 2006.
    26. Jelena Ristic´, Enrique Calleja, Sergio Ferna´ndez-Garrido,et al., “On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy.”, Journal of Crystal Growth, Vol. 310, No. 18, pp. 4035-4045, 2008.
    27. M.A. Sanchez-Garcia, E. Calleja, E. Monroy, F.J. Sanchez, F. Calle, E. Munoz, and R. Beresford,“The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1) .”, Journal of Crystal Growth, Vol. 183, No. 1-2, pp. 23-30, 1998.

    28. R. K. Debnath, R. Meijers, and T. Richter, “Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111) .”, APPLIED PHYSICS LETTERS, Vol. 90, No. 12, pp.123117, 2007.
    29. K.A. Bertness, A. Roshko, L.M. Mansfield, T.E. Harvey, and N.A. Sanford, “Nucleation conditions for catalyst-free GaN nanowires.”, Journal of Crystal Growth, Vol. 300, No. 1, pp. 94-99, 2007.
    30. D. A. Gaul, and W. S. Rees Jr., “True Blue Inorganic Optoelectronic Devices.”, ADVANCED MATERIALS, Vol. 12, No. 13, pp. 935-946, 2000.
    31. 郭浩中、賴芳儀、郭守義,LED原理與應用 第二版,五南圖書出版股份有限公司,台北市,頁別,2012.
    32. Modern Lab Experiment, PN-Junction. Available from: http://wanda.fiu.edu/teaching/courses/Modern_lab_manual/pn_junction.html
    33. Shuji Nakamura, “Background Story of the Invention of Efficient InGaN Blue‐Light‐Emitting Diodes (Nobel Lecture) .”, Angew. Chem. Int. Ed, Vol. 54, No. 27, pp.7770-7788, 2015.
    34. Annemie Bogaerts, Erik Neyts, Renaat Gijbels, and Joost van der Mullen, “Gas discharge plasmas and their applications.”, Spectrochimica Acta Part B, Vol. 57, No. 4, pp. 609-658, 2002.
    35. J. R. Roth, “Industrial Plasma Engineering: Volume 1: Principles Institution of Physics. ”, Bristol and Philadelphia: Institution of Physics Publishing, 1995.
    36. Alexander Fridman, and Lawrence A. Kennedy, “plasma physics and engineering second edition.”, CRC Press Taylor & Francis Group, 2011.
    37. F. Niklaus, G. Stemme, J. -Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding.”, JOURNAL OF APPLIED PHYSICS, Vol. 99, No. 3, pp. 031101, 2006.

    38. Eli Yablonovitch, T. Gmltter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films.”, APPLIED PHYSICS LETTERS, Vol. 51, No. 26, pp. 2222-2224, 1987.
    39. F. A. Kish, F. M. Steranka, D. C. DeFevere, et al., “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes.”, APPLIED PHYSICS LETTERS, Vol. 64, No. 21, pp. 2839-2841, 1994.
    40. Sadao Adachi, and Kunishige Oe, “Chemical Etching of GaAs.”, Journal of the Electrochemical Society, Vol. 131, No. 1, pp. 126-130, 1984.
    41. T. Detchprohm, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of thick GaN film on sapphire substrate by using ZnO buffer layer.”, Journal of Crystal Growth, Vol. 128, No. 1-4, pp. 384-390, 1993.
    42. Chen-Fu Chu, Fang-I Lai, Jung-Tang Chu, et al., “Study of GaN light-emitting diodes fabricated by laser lift-off technique.”, JOURNAL OF APPLIED PHYSICS, Vol. 95, No. 8, pp. 3916-3922, 2004.
    43. M. K. Kelly, O. Ambacher, B. Dahlheimer, et al., “Optical patterning of GaN films.”, APPLIED PHYSICS LETTERS, Vol. 69, No. 12, pp. 1749-1751, 1996.
    44. W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates.”, APPLIED PHYSICS LETTERS, Vol. 72, No. 5, pp. 599-601, 1998.
    45. Tetsuzo Ueda, Masahiro Ishida, and Masaaki Yuri, “Separation of Thin GaN from Sapphire by Laser Lift-Off Technique.”, Japanese Journal of Applied Physics, Vol. 50, No. 4, pp. 041001, 2011.

    46. Jin-Hyo Boo, Carsten Rohr, and Wilson Ho, “MOCVD of BN and GaN thin films on silicon: new attempt of GaN growth with BN buffer layer.”, Journal of Crystal Growth, Vol.189, pp. 439-444, 1998.
    47. Yasuyuki Kobayashi1, Kazuhide Kumakura, Tetsuya Akasaka, and Toshiki Makimoto, “Layered boron nitride as a release layer for mechanical transfer of GaN-based devices.”, Natures, Vol. 484, No. 7393, pp. 223-227, 2012.
    48. 何雍,儀器分析總整理,鼎茂圖書出版股份有限公司,台灣,頁別,2006.
    49. Geochemical Instrumentation and Analysis, Scanning Electron Microscopy (SEM). Available from: https://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
    50. 汪建民,材料分析,中國材料科學學會,新竹市,頁別,2009.
    51. S. Y. Kuo, C. C. Kei, C. K. Chao, et al., “Catalyst-free GaN nanorods grown by metalorganic molecular beam epitaxy.”, IEEE Transactions on Nanotechnology, Vol. 5, No.3, pp. 273-277, 2006.
    52. 吳東憲, 以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元件之應用, 國立成功大學化工系博士論文, 民國101年.
    53. Chris G. Van de Walle, Catherine Stampfl, and Jorg Neugebauer, “Theory of doping and defects in III–V nitrides.”, Journal of Crystal Growth, Vol. 189, pp.505-510, 1998.
    54. M. A. Reshchikov, G.-C. Yi, and B. W. Wessels, “Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities.”, PHYSICAL REVIEW B, Vol. 59, No. 20, pp. 13176-13183, 1999.
    55. J. M. Myoung, K. H. Shim, C. Kim, O. Gluschenkov, and K. Kim, “Optical characteristics of p-type GaN films grown by plasma-assisted molecular beam epitaxy.”, APPLIED PHYSICS LETTERS, Vol. 69, No. 18, pp. 2722-2724, 1996.
    56. 郭泰成, P型氮化鎵奈米晶體成長與圖案化基板製作, 國立成功大學化工系碩士論文, 民國104年.
    57. H. Obloh, K.H. Bachem, U. Kaufmann, et al., “Self-compensation in Mg doped p-type GaN grown by MOCVD.”, Journal of Crystal Growth, Vol. 195, No. 1-4, pp. 270-203, 1998.
    58. Daisuke Iida , Kenta Tamura, Motoaki Iwaya, et al., “Compensation effect of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy.”, Journal of Crystal Growth, Vol. 312, No. 21, pp. 3131-3135, 2010.
    59. 張香棨, 成長核殼式n型及p型氮化鎵奈米柱用於發光二極體元件之製作, 國立成功大學化工系碩士論文, 民國105年.
    60. Jorg Neugebauer, and Chris G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN.”, APPLIED PHYSICS LETTERS, Vol. 69, No. 4, pp. 503-505, 1996.
    61. Chris G. Van de Walle, and Jorg Neugebauer, “First-principles calculations for defects and impurities: Applications to III-nitrides.”, JOURNAL OF APPLIED PHYSICS, Vol. 95, No. 8, pp. 3851-3879, 2004.
    62. S. Y. Lim, M. Forster, X. Zhang, et al., “Applications of Photoluminescence Imaging to Dopant and Carrier Concentration Measurements of Silicon Wafers.”, IEEE JOURNAL OF PHOTOVOLTAICS, Vol. 3, No. 2, pp. 649-655, 2013.
    63. 李訓廷, 成長高品質低密度之n形氮化鎵微米柱用於光電元件, 國立成功大學化工系碩士論文, 民國103年.

    無法下載圖示 校內:2023-07-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE