| 研究生: |
賴柏憲 Lai, Po-Hsien |
|---|---|
| 論文名稱: |
砷化銦鎵通道異質結構場效電晶體之研製 Fabrication of Heterostructure Field-Effect Transistors (HFETs) with InGaAs Channels |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 砷化銦鎵 、硫化 、異質結構場效電晶體 |
| 外文關鍵詞: | InGaAs, sufur passivation, HFET |
| 相關次數: | 點閱:157 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用低壓有機金屬化學汽相沉積法成長及研製砷化鎵材料系列之異質結構場效電晶體。接著使用硫化銨((NH4)2Sx)溶液進行元件表面之處理,並進一步探討硫化技術對元件特性之影響。在論文中所探討的元件經過硫化處理之後,展現出良好的元件特性,如高崩潰電壓、低漏電流、高線性度及優異的微波特性。更進一步,為了獲得較大的功率增益及頻寬,我們使用深紫外線光罩微影系統來研製具次微米閘極尺寸之場效電晶體。此外,我們也研製了一種具有駝峰式閘極及複合式通道結構之場效電晶體。實驗上,所研製的元件具有良好的直流、微波及高溫操作特性。這些優點顯示元件非常適合應用於高速和高功率電路中。
首先,我們探討利用硫化銨溶液在砷化鋁鎵/砷化銦鎵/砷化鎵擬晶性高電子移動率場效電晶體上進行表面鈍化處理,研究其對元件特性所造成的影響,並將其結果與未進行硫化處理之傳統元件做比較。同時,我們完成了次微米閘極元件,而且也進一步地提昇了元件的特性。從實驗結果我們得知,砷化鋁鎵表面在經過硫化處理之後能夠有效的減少表面鍵結電荷及相對應的電容。因此,經過硫化處理之元件具有較低的漏電流及較佳的高頻特性。
其次,在磷化銦鎵/砷化銦鎵/砷化鎵擬晶性高電子移動率場效電晶體上,我們使用硫化銨溶液進行磷化銦鎵表面鈍化處理。我們也利用此結構研製了次微米閘極元件來增進高頻特性。對於有潛力的磷化銦鎵材料而言,硫化處理能更進一步地減少表面復合速度及表面態密度。實驗結果顯示,元件經過硫化處理之後可得到較佳的元件特性,如高崩潰電壓、低漏電流以及好的高頻響應。
最後,我們將n+型磷化銦鎵/p+型磷化銦鎵/n型砷化鎵駝峰式閘極結構及砷化銦鎵/砷化鎵複合式通道結構應用在一異質結構場效電晶體中。此種駝峰式結構的使用讓元件具有較大的閘極位障。另外,於複合式通道結構中,使用砷化銦鎵層可以增加載子的傳輸特性,而砷化鎵層亦可改善元件在高電場下之操作能力。所以,藉由應用上述兩種結構之優點,使得元件能夠具有良好的直流、微波及高溫操作特性。
In this thesis, three GaAs-based heterostructure field-effect transistors (HFETs), grown by a low-pressure metal organic chemical vapor deposition (LP-MOCVD) system, have been fabricated and investigated. In addition, the influences of sulfur ((NH4)2Sx) treatment technique on studied HFETs are also studied. With the aid of sulfur passivation, the studied devices proposed in this work reveal higher breakdown voltage, lower leakage current, better device linearity, and superior microwave performances. For obtaining more power gain and bandwidth of transistors, we also fabricate sub-micron meter gate devices with resorting to deep ultraviolet (UV) photolithography. Besides, we employ the camel-gate and composite channel structure to fabricate a novel HFET. Experimentally, the studied devices show good DC and microwave characteristics and high temperature operation capability. These advantages suggest that the proposed devices are suitable for high-speed and high-power integrated circuit applications.
First, we report the characteristics of an AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility field-Effect transistor (PHEMT). In addition, the influences of surface passivation using (NH4)2Sx solution are also compared and studied. Experimentally, the sulfur passivation on AlGaAs surface effectively reduces the surface bound charges and hence the corresponding capacitance. Thus, the studied device with sulfur treatment can suppress the leakage current and shows good microwave characteristics with flat and wide operation regime. Moreover, a sub-micron meter gate structure is also fabricated and higher device performances are obtained.
Second, we report the characteristics of an InGaP/InGaAs/GaAs PHEMT. Also, the influences of surface passivation on InGaP layer are studied. For the promising wide-gap InGaP material, the surface recombination velocity and surface states are further reduced by sulfur passivation. As a result, high breakdown voltage, low leakage current, and good frequency response are obtained in the studied device. In the meanwhile, we also develop sub-micron meter gate device to further improve the high-frequency device performances.
Finally, an n+-InGaP/p+-InGaP/n-GaAs camel-like gate sturcture and InGaAs/GaAs composite channel structure are introduced to fabricate a new HFET. The employed n+-InGaP/p+-InGaP/n-GaAs camel-gate structure provides a larger barrier height. In addition, composite channel structures with the n-InGaAs channel to improve the carrier transport properties and the n-GaAs channel to improve the operation capability under higher electric field are employed in the studied device. Therefore, good DC and microwave properties and higher temperature operation capability are simultaneously obtained.
[1] S. Honda, T. Miyake, T. Ikegami, K. Yagi, Y. Bessho, R. Hiroyama, M. Shone, and M. Sawada, “Low threshold 650 nm band real refractive index-guided AlGaInP laser diodes with strain-compensated MQW active layer,” IEE Electron. Lett., vol. 36, pp. 1284-1286, 2000.
[2] D. Jang, J. Shim, J. Lee, and Y. Eo, “Asymmetric output characteristics in 1.3 μm spot-size converted laser diodes,” IEEE J. Quantum Electron., vol. 37, pp. 1611-1617, 2001.
[3] W. C. Liu; K. H. Yu; K. W. Lin; J. H. Tsai; C. Z. Wu; K. P. Lin; and C. H. Yen, “On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage, and high-temperature operations” IEEE Trans. Electron Device., vol. 48, pp. 1522-1530, 2001.
[4] W. C. Liu; W. L. Chang; W. S. Lour; K. H. Yu; K. W. Lin; C. C. Cheng; and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor” IEEE Trans. Electron Device., vol. 48, pp. 1290-1296, 2001.
[5] W. C. Liu; K. H. Yu; R. C. Liu; K. W. Lin; K. P. Lin; C. H. Yen; C. C. Cheng; and K. B. Thei, “ Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel HFET” IEEE Trans. Electron Device., vol. 48, pp. 2677-2683, 2001.
[6] K. H. Yu; H. M. Chuang; K. W. Lin; S. Y. Cheng; C. C. Cheng; J. Y. Chen; and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT)” IEEE Trans. Electron Device., vol. 49, pp. 1687-1693, 2002.
[7] C. Y. Chen; S. Y. Cheng; W. H. Chiou; H. M. Chuang; and W. C. Liu, “A novel InP/InGaAs TEBT for ultralow current operations” IEEE Electron Device Lett., vol. 24, pp. 126-128, 2003.
[8] C. Y. Chen; S. Y. Cheng; W. H. Chiou; H. M. Chuang; R. C. Liu; C. H. Yen; J. Y. Chen; C. C. Cheng; and Wen-Chau Liu, “DC characterization of an InP-InGaAs tunneling emitter bipolar transistor (TEBT)” IEEE Trans. Electron Device., vol. 50, pp. 874-879, 2003.
[9] H. M. Chuang, S. Y. Cheng; X. D. Liao; C. Y. Chen; and W. C. Liu, “InGaP/InGaAs double delta-doped channel transistor,” IEE Electron. Lett., vol. 39, pp. 1016-1018, 2003.
[10] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP/InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Device., vol. 50, pp. 1717-1723, 2003.
[11] D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Double-Barrier-Emitter Triangular-Barrier Optoelectronic Switch,” IEEE J. Quantum Electron., vol. 40, pp. 413-419, 2004.
[12] D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Characteristics of a New BBOS With an AlGaAs-d(n+)-GaAs-InAlGaP Collector Structure,” IEEE Trans. Electron Devices, vol. 51, pp. 542-547, 2004.
[13] S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee, and W. C. Liu, “Comprehensive study of InGaP/AlxGa1-xAs/GaAs heterojunction bipolar transistors with different doping concentrations of AlxGa1-xAs graded layers,” Semicond. Sci. Technol., vol. 19, pp. 351-358, 2004.
[14] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, pp. 274-276, 1999.
[15] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, W. S. Lour, and W. C. Liu, “Influences of the mesa-sidewall effect on Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic transistors,” Semicond. Sci. Technol., vol. 14, pp. 887-891, 1999.
[16] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, S. Y. Cheng, W. S. Lour, and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys., vol. 38, pp. L1385-1387, 1999.
[17] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, K. H. Yu, K. W. Lin, C. C. Cheng, W. S. Lour, and W. C. Liu, “High-performance double delta-doped sheets Ga0.51In0.49P/In0.15Ga0.85As/Ga0.51In0.49P pseudomorphic heterostructure transistors,” Semicond. Sci. Technol., vol. 15, pp. 1-6, 2000.
[18] K. P. Lin, C. H. Yen, W. L. Chang, K. H. Yu, K. W. Lin, and W. C. Liu, “Study of a high-barrier-gate pseudomorphic transistor with a step-compositioned channel and bottomside delta-doped sheet structure,” Semicond. Sci. Technol., vol. 15, pp. 643-647, 2000.
[19] K. H. Yu, K. W. Lin, C. C. Cheng, W. L. Chang, J. H. Tsai, S. Y. Cheng, and W. C. Liu, “Temperature Dependence of Gate Current and Breakdown Behaviors in an n+-GaAs/p+-InGaP/n--GaAs High-Barrier Gate Field-Effect Transistor,” Jpn. J. Appl. Phys., vol. 40, pp. 24-27, 2001.
[20] K. W. Lin, K. H. Yu, W. L. Chang, C. C. Cheng, K. P. Lin, C. H. Yen, W. S. Lour, and W. C. Liu, “Characteristics and Comparison of In0.49Ga0.51P/GaAs Single and Double Delta-Doped Pseudomorphic High Electron Mobility Transistors (d-PHEMT’s),” Solid-State Electron., vol. 45, pp. 309-314, 2001.
[21] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A New Pd/Oxide/Al0.3Ga0.7As MOS Hydrogen Sensor,” IEEE Electron Device Lett., vol. 24, pp. 390-392, 2003.
[22] K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of A New Pt/Oxide/In0.49Ga0.51P Hydrogen-Sensing Schottky Diode,” Sens. Actuators B, vol. 94, pp. 145-151, 2003.
[23] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Hydrogen Sensing Pd/InGaP Metal-Semiconductor (MS) Schottky Diode Hydrogen Sensor,” Semicond. Sci. Technol., vol. 18, pp.615-619, 2003.
[24] H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative Study on DC Characteristics of In0.49Ga0.51P-Channel Heterostructure Field-Effect Transistors with Different Gate Metals,” Semicond. Sci. Technol., vol. 18, pp. 319-324, 2003.
[25] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, P. H. Lai, C. I. Kao, and W. C. Liu, “Study of InGaP/InGaAs Double Delta-Doped Channel Heterostructure Field-Effect Transistors (DDDCHFETs),” J. Vac. Sci. & Technol. B, vol. 22, pp. 832-837, 2004.
[26] H. M. Chuang, S. Y. Cheng, P. H. Lai, X. D. Liao, C. Y. Chen, C. H. Yen, R. C. Liu, and W. C. Liu, “Study of InGaP/InGaAs Double Doped Channel Heterostructure Field-effect Transistors (DDCHFETs),” Semicond. Sci. Technol., vol. 19, pp. 87-92, 2004.
[27] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, C. C. Cheng, and W. C. Liu, “Characteristics of Pd/InGaP Schottky Diodes Hydrogen Sensors,” IEEE Sensors Journal, vol. 4, pp. 72-79, 2004.
[28] Z. H. Lu, M. J. Graham, X. H. Feng, and B. X. Yang, ”Structure of S on passivated GaAs (100),” Appl. Phys. Lett., vol. 62, pp. 2932-2934, 1993.
[29] Y. Nannichi, J. Fan, H. Oigawa, and A. Koma, “A model to explain the effective passivation of the GaAs surface by (NH4)2Sx treatment,” Jpn. J. Appl. Phys., vol. 27, pp. L2367-2369, 1988.
[30] H. Oigawa, J. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of ?-V compound semiconductors,” Jpn. J. Appl. Phys., vol. 30, pp. L322-325, 1991.
[31] C. R. Moon, B. D. Choe, S. D. Kwon, and H. Lim, “Difference of interface trap passivation in Schottky contacts formed on (NH4)2Sx-treated GaAs and In0.5Ga0.5P,” J. Appl. Phys., vol. 81, pp. 2904-2906, 1997.
[32] R. E. Thoren, S. L. Su, R. J. Fischer, W. F. Kopp, W. G. Lyons, P. A. Miller, and H. Morkos, “Analysis of camel gate FET’s,” IEEE Trans. Electron Devices, vol. 30, pp. 212-216, 1983.
[33] W. S. Lour, W. C. Liu, J. H. Tsai, and L. W. Laih, “High-performance camel-gate field-effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., vol. 67, pp. 2636-2638, 1995.
[34] W. S. Lour, J. H. Tsai, L. W. Laih, and W. C. Liu, “Influence of channel doping-profile on camel-gate field-effect transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 871-876, 1996.
[35] W. S. Lour, W. L. Chang, S. T. Young, and W. C. Liu, “Improved breakdown in LP-MOCVD grown n+-GaAs/d(p+)-InGaP/n-GaAs heterojunction camel-gate FET,” IEE Electron. Lett., vol. 34, pp. 814-815, 1998.
[36] W. L. Chang, S. Y. Cheng, Y. H. Shie, H. J. Pan, W. S. Lour, and W. C. Liu, “On the n+-GaAs/d(p+)-InGaP/n-GaAs high breakdown voltage field-effect transistor,” Semicond. Sci. Technol., vol. 14, pp. 307-311, 1999.
[37] H. Mizuta, K. Yamaguchi, M. Yamane, T. Tanoue, and S. Takahashi, “Two-dimensional numerical simulation of Fermi-level pinning phenomena due to DX centers in AlGaAs/GaAs HEMTs,” IEEE Trans. Electron Devices, vol. 36, pp. 2307-2314, 1989.
[38] Y. J. Chan, D. Pavlidis, M. Razeghi, and F. Omnes, “Ga0.51In0.49P/GaAs HEMT's exhibiting good electrical performance at cryogenic temperatures,” IEEE Trans. Electron Devices, vol. 37, pp. 2141-2147, 1990.
[39] C. Canali, F. Magistrali, A. Paccagnella, M. Sangalli, C. Tedesco, and E. Zanoni, ”Trap-related effects in AlGaAs/GaAs HEMTs,” IEE Proceedings G, Circuits, Devices and Systems, vol. 138, pp. 104-108, 1991.
[40] Y. J. Chan and D. Pavlidis, “Trap studies in GaInP/GaAs and AlGaAs/GaAs HEMT's by means of low-frequency noise and transconductance dispersion characterizations,” IEEE Trans. Electron Devices, vol. 41, pp. 637-642, 1994.
[41] H. Willemsen and D. Nicholson, “GaAs Ics in commercial OC-192 equipment”, IEEE GaAs IC Symp. Tech. Dig., pp. 10-13, 1996.
[42] L. W. Laih, S. Y. Cheng, W. C. Wang, P. H. Lin, J. Y. Chen, W. C. Liu, and W. Lin, “High-performance InGaP/InGaAs/GaAs step-compositioned doped-channel field-effect transistor (SCDCFET),” IEE Electron. Lett., vol. 33, pp. 98-99, 1997.
[43] K. H. Yu, K. W. Lin, C. C. Cheng, K. P. Lin, C. H. Yen, C. Z. Wu, and W. C. Liu, “InGaP/GaAs camel-like field-effect transistor for high-breakdown and high-temperature applications,” IEE Electron. Lett., vol. 36, no. 22, pp. 1886-1888, 2000.
[44] S. S. Lu, C. C. Meng, Y. S. Lin, and H. Lan, “The effect of gate recess profile on device performance of Ga0.51In0.49P/In0.2Ga0.8As doped-channel FET's,” IEEE Trans. Electron Devices, vol. 46, pp. 48-54, 1999.
[45] Y. W. Chen, W. C. Hsu, H. M. Shieh, Y. J. Chen, Y. S. Lin, Y. J. Li, and T. B. Wang, “High breakdown characteristic δ-doped InGaP/InGaAs/AlGaAs tunneling real-space transfer HEMT,” IEEE Trans. Electron Devices, vol. 49, pp. 221-225, 2002.
[46] I. H. Kang and J. I. Song, “Enhancement-mode p-HEMT using selective hydrogen treatment,” IEE Electron. Lett., vol. 39, pp. 408-409, 2003.
[47] Y. Dong, X. M. Ding, X. Y. Hou, Y. Li, and X. B. Li, “Sulfur passivation of GaAs metal-semiconductor field-effect transistor,” Appl. Phys. Lett., vol. 77, pp. 3839-3841, 2000.
[48] N. Yokoi, H. Andoh, and M. Takai, “Surface structure of (NH4)2Sx-treated GaAs (100) in an atomic resolution,” Appl. Phys. Lett., vol. 64, pp. 2578-2580, 1994.
[49] S. D. Kwon, H. K. Kwon, B. D. Choe, H. Lim, and J. Y. Lee, “Investigation of electrical properties and stability of Schottky contacts on (NH4)2Sx-treated n- and p-type In0.5Ga0.5P,” J. Appl. Phys., vol. 78, pp. 2482-2488, 1995.
[50] J. Fan, H. Oigawa, Y. Nannichi, “The Effect of (NH4)2S Treatment on the Interface Characteristics of GaAs MIS Structures,” Jpn. J. Appl. Phys., vol. 27, pp. L1331-L1333, 1988.
[51] M. S. Carpenter, M. R. Melloch, M. S. Lundstrom, and S. P. Tobin, “Effects of Na2S and (NH4)2S edge passivation treatments on the dark current-voltage characteristics of GaAs pn diodes,” Appl. Phys. Lett., vol. 51, pp. 2157-2159, 1988.
[52] J. Fan, Y. Kurata, Y. Nannichi, “Marked Reduction of the Surface/Interface States of GaAs by (NH4)2Sx Treatment,” Jpn. J. Appl. Phys., vol. 28, pp. L2255-L2257, 1989.
[53] H. Sugahara, M. Oshima, and R. Klauser, “Bonding states of chemisorbed sulphur atoms on GaAs,” Surf. Sci., vol. 242, pp. 335-340, 1991.
[54] P. C. Chao, S. C. Palmateer, P. M. Smith, U. K. Mishra, K. H. G. Duh, and J. C. M. Hwang, “Millimeter-wave low noise high electron mobility transistors,” IEEE Electron Device Lett., vol. 6, pp. 531-533, 1985.
[55] A. Kastalsky, and R. A. Kiehi, “On the low-temperature degradation of (AlGa)As/GaAs modulation-doped field-effect transistors,” IEEE Trans. Electron. Devices., vol. 33, pp. 414-423, 1986.
[56] H. F. Chau, D. Pavlidis, J. L. Chraux, and J. Graffuil, “Studies of DC, low frequency, and microwave characteristics of uniform and step-doped GaAs/AlGaAs HEMT’s,” IEEE Trans. Electron Devices, vol. 36, pp. 2288-2297, 1989.
[57] M. Tomizawa, T. Furuta, K. Yokoyama, and A. Yoshii, “Modeling for electron transport in AlGaAs/GaAs/AlGaAs double-heterojunction structures,” IEEE Trans. Electron Devices, vol. 36, pp. 2380-2385, 1989.
[58] C. Lien, Y. Huang, H. Chien, and W. Wang, “Charge control model of the double delta-doped quantum-well field-effect transistor,” IEEE Trans. Electron Devices, vol. 41, pp. 1351-1356, 1994.
[59] Y. J. Chan, and M. T. Yang, “Al0.3Ga0.7As/InxGa1-xAs (0 x 0.25) doped-channel field-effect transistors (DCFET’s),” IEEE Trans. Electron Devices, vol. 42, pp. 1745-1749, 1995.
[60] Y. J. Jeon, Y. H. Jeong, B. Kim, Y. G. Kim, W. P. Hong, and M. S. Lee, “DC and RF performance of LP-MOCVD grown Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT’s with Si-delta doped GaAs layer,” IEEE Electron Device Lett., vol. 16, pp. 563-565, 1995.
[61] N.e Yoshida, M. Totsuka, J. Ino, and S. Matsumoto, “Surface Passivation of In0.52Al0.48As Using (NH4)2Sx and P2S5/(NH4)2S,” Jpn. J. Appl. Phys., vol. 33, pp. 1248-1252, 1994.
[62] J. F. Fan, H. Oigawa, and Y. Nannichi, “Metal-Dependent Schottky Barrier Height with the (NH4)2Sx-treated GaAs,” Jpn. J. Appl. Phys., vol. 27, pp. L2125-L2127, 1988.
[63] J. M. Seo, Y. K. Kim, H. G. Lee, Y. S. Chung, and S. Kim, “Reduction of gap states of ternary ?-V semiconductor surfaces by sulfur passivation: Comparative studies of AlGaAs and InGaP,” J. Vac. Sci. Technol. A, vol. 14, pp. 941-945, 1996.
[64] V. N. Bessolov, M. V. Lebedev, N. M. Binh, M. Friedrich and D. R. T. Zahn, “Sulphide passivation of GaAs: the role of the sulphur chemical activity,” Semicond. Sci. Technol., vol. 13, pp. 611-614, 1998.
[65] Z. Q. Shi and W. A. Anderson, “Nearly ideal Schottky contacts of n-InP,” Third International Conference on Indium Phosphide and Related Materials, pp. 535-538, 1991.
[66] R.B. Darling, “Current-voltage characteristics of Schottky barrier diodes with dynamic interfacial defect state occupancy,” IEEE Trans. Electron Devices, vol. 43, pp. 1153-1160, 1996.
[67] C. T. Lee, M. H. Lan, and C. D. Tsai, “Improved performances of InGaP Schottky contact with Ti/Pt/Au metals and msm photodetectors by (NH4)2Sx treatment,” Solid-State Electron., vol. 41, pp. 1715-1719, 1997.
[68] Y. L. Jiang; G. P. Ru; F. Lu; B. Z. Li; W. Li; and A. Z. Li, “The Schottky characteristics of Ti/n-GaAs surface-treated by N2 plasma,” Proceedings. 6th International Conference on Solid-State and Integrated-Circuit Technology, vol. 2, pp. 1073-1076, 2001.
[69] T. Ytterdal, B. J. Moon, T. A. Fjeldly, and M. S. Shur, “Enhanced GaAs MESFET CAD model for a wide range of temperature,” IEEE Trans. Electron Devices, vol. 42, pp. 1724-1734, 1995.
[70] R. Hakimi and M. C. Amann, “Reduction of 1/f carrier noise in InGaAsP/InP heterostructures by sulphur passivation of facets,” Semicond. Sci. Technol., vol. 12, pp. 778-780, 1997.
[71] K. H. Yu, W. L. Chang, S. C. Feng, and W. C. Liu, “Characteristics of GaAs/InGaP/GaAs Doped Channel Camel-Gate Field-Effect Transistor,” Solid-State Electron., vol. 44, pp. 2069-2075, 2000.
[72] M. D. Feller, S. C. Shunk, J. M. Kuo, D. M. Tennant, B. Tell, “Threshold Voltage of Submicron Ga0.47In0.53As HIGFETs,” IEE Electron. Letters, vol. 25, pp. 975-976, 1989.
[73] E. Y. Chang, K. C. Lin, E. H. Liu, C. Y. Chang, T. H. Chen, and John Chen, “Submicron T-shaped gate HEMT fabrication using deep-UV lithography,” IEEE Electron Device Letters., vol. 15, pp. 277-279, 1994.
[74] W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
[75] S W Tan, M K Hsu, A H Lin, M Y Chu, W T Chen and W S Lour, “Sub-0.25 micron gate-like heterojunction doped-channel FETs with a controllable notch-angle V-gate,” Semicond. Sci. Technol., vol. 19, pp. 384-388, 2004.
[76] S W Tan, W T Chen, M Y Chu and W S Lour, “Sub-0.5-μm gate doped-channel field-effect transistors with HEMT-like channel using thermally reflowed photoresist and spin-on glass,” Semicond. Sci. Technol., vol. 19, pp. 167-171, 2004.
[77] K. P. Pande and D. Gutierrez, “Channel mobility enhancement in InP metal-insulator-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 46, pp. 416-418, 1985.
[78] J. Chave, A. Choujaa, C. Santinelli, R. Blanchet, and P. Viktorovitch, “Arsenic passivation of InP surface for metal-insulator-semiconductor devices based on both ultra-high vacuum technique and chemical procedure,” J. Appl. Phys., vol. 61, pp. 257-260, 1987.
[79] Y. V. Medvedev, “Thermodynamic stability of GaAs sulfur passivation,” Appl. Phys. Lett., vol. 64, pp. 3458-3460, 1994.
[80] Y. K. Su, H. C. Wang, C. L. Lin, W. B. Chen, and S. M. Chen, “ Improvement of AlGaInP light Emitting Diode by Sulfide Passivation,” IEEE Pho. Tech. Lett., vol. 15, no. 10,pp. 1345-1347, 2003.
[81] M. S. Carpenter, M. R. Melloch, and T. E. Dungan, “ Schottky barrier formation on (NH4)2S-treated n- and p-type (100)GaAs,” Appl. Phys. Lett., vol. 53, pp. 66-68, 1988.
[82] R. Iyer, R. R. Chang, and D. L. Lile, “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.
[83] H. Sugahara, M. Oshima, H. Oigawa, H Shigekawa, and Y. Nannichi, “Synchrotron radiation photoemission analysis for (NH4)2Sx-treated GaAs,” J. Appl. Phys., vol. 69, pp. 4349-4353, 1991.
[84] M. Sugiyama, S. Maeyama, M. Oshima, H. Oigawa, Y. Nannichi, and H. Hashizume, “Surface and interface structures of S-passivated GaAs(111) studied by soft x-ray standing waves,” Appl. Phys. Lett., vol. 60, pp. 3247-3249, 1992.
[85] Y. Tao, A. Yelon, E. Sacher, Z. H. Lu, and M. J. Graham, “ S-passivated InP (100)-(1×1) surface prepared by a wet chemical process,” Appl. Phys. Lett., vol. 60, pp. 2669-2671, 1992.
[86] S. D. Kwon, C. H. Kim, H. K. Kwon, B. D. Choe, and H. Lim, “Interface properties of (NH4)2Sx-treated In0.5Ga0.5P Schottky contacts,” J. Appl. Phys., vol. 77, pp. 2202-2204, 1995.
[87] E. F. Schubert, J. E. Cunningham, and W. T. Tsang, “Electron-mobility enhancement and electron-concentration enhancement in d-doped n-GaAs at T=300 K,” Solid State Commun., vol. 63, pp. 591-594, 1987.
[88] G. Gillman, B. Vinter, E. Barbier, and T. Tardella, “Experimental and theoretical mobility of electrons in delta-doped GaAs,” Appl. Phys. Lett., vol. 52, pp. 972-974, 1988.
[89] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double d-doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, Vol. 41, pp. 456-457, 1994.
[90] H. Q. Zheng, G. I. Ng, Y. Q. Zhang, K. Radhakrishnan, K. Y. Lee, P. Y. Chee, M. S. Tse, J. X. Weng, and S. F. Yoon, “High linearity, current drivability and fmax using pseudomorphic GaAs double-heterojunction HEMT (DHHEMT),” Proc. IEEE International Conference on Semiconductor Electronics, 1996, pp. 12-14.
[91] W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modulation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s,” IEEE Trans. Electron Devices, vol. 42, pp. 804-809, 1995.
[92] Y. K. Kim, S. Kim, J. M. Seo, S. Ahn, K. J. Kim, T. K. Kang, and B. Kim, “Metal-dependent Fermi-level movement in the metal/sulfur-passivated InGaP contact,” J. Vac. Sci. Technol. A, vol. 15, pp. 1124-1128, 1997.
[93] C. C. Meng, G. R. Liao, and S. S. Lu, “Formation of Submicron T-gate by rapid thermally reflowed resist with metal transfer layer,” IEE Electron. Letters, vol. 37, pp.1045-1046, 2001.
[94] J. H. Kim, S. J. Jo, and J. I. Song, “Improved microwave and noise performances of InGaP/In0.33Ga0.67As p-HEMT grown on patterned GaAs substrate,” IEE Electron. Lett., vol. 37, pp. 981-983, 2001.
[95] W. S. Lour, M. K. Tsai, K. C. Chen, Y. W. Wu, S. W. Tan, and Y. J. Yang, “Dual-gate In0.5Ga0.5P/In0.2Ga0.8As pseudomorphic high electron mobility transistors with high linearity and variable gate-voltage swing,” Semicond. Sci. Technol., vol. 16, pp. 826-830, 2001.
[96] N. H. Sheng, C. P. Lee, R. T. Chen, D. L. Miller, and S. J. Lee, “Multiple-channel GaAs/AlGaAs high electron mobility transistors,” IEEE Electron Device Lett., vol. 6, pp. 307-310, 1985.
[97] S. J. Chang and C. P. Lee, “Numerical simulation of sidegating effect in GaAs MESFET's,” IEEE Trans. Electron Devices, vol. 40, pp. 698-704, 1993.
[98] Y. S. Lin, S. S. Lu, and Y. J. Wang, “High-performance Ga0.51In0.49P/GaAs airbridge gate MISFET's grown by gas-source MBE,” IEEE Trans. Electron Devices, vol. 46, pp. 921-929, 1997.
[99] M. Marso, G. Zwinge, D. Grutzmacher, J. Hergeth, and H. Beneking, “GaInAs camel transistors with current gain above 6 at room temperature,” IEE Electron. Lett., vol. 27, pp. 335-337, 1991.
[100] J. H. Tsai, “A novel InGaP/InGaAs/GaAs double /spl delta/-doped pHEMT with camel-like gate structure,” IEEE Electron Device Lett., vol. 24, pp. 1-3, 2003.
[101] B. Kim, R. J. Matyi, M. Wurtele, K. Bradshaw, M. A. Khatibzadeh, and H. Q. Tserng, “Millimeter-wave power operation of an AlGaAs/InGaAs/GaAs quantum well MISFET,” IEEE Trans. Electron Devices, vol. 36, pp. 2236-2242, 1989.