| 研究生: |
林獻堂 Lin, Hsien-Tang |
|---|---|
| 論文名稱: |
快速熱氧化製程氧化層厚度均勻性之研究 Studies of Oxide Thickness Uniformity in RTO |
| 指導教授: |
王振源
Wang, Chen-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 氧化層厚度 、晶圓 、快速熱氧化製程 |
| 外文關鍵詞: | RTO, wafer, oxide thickness |
| 相關次數: | 點閱:100 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以數值方法探討快速熱處理機台內的矽氧化製程,機台的直徑300厘米之晶圓快速加熱10秒後升溫到1300K和十秒後維持定溫的氧化過程。氧化厚度成長方程式為冪次法則x=s+at^b,a和b為溫度和壓力的函數。整個分析以不同腔體條件對晶圓表面溫度和氧化層厚度均勻性的影響,如加熱燈功率調整、氧化製程溫度1200~1400K範圍下、腔體壓力0.5~2atm以及晶圓轉速0~240rpm。
晶圓表面溫度經過加熱燈功率調整後,可明顯的改善晶圓表面溫度不均的現象,由原來的單一功率溫差16.27K降到1.784K。氧化溫度直接影響氧化層厚度的成長速度,溫度越高成長速度也跟著越快。但是氧化溫度越高越難保持晶圓溫度均勻,也使得氧化層厚度分佈不均勻。腔體壓力0.5atm的對流效應最弱,使得入口冷氣體對於晶圓中心區域表面溫度降溫效應也最小,因此晶圓表面溫差最小,在成長相同氧化層厚度時,氧化層厚度分佈最均勻。轉速從0rpm調到240rpm,在晶圓快速旋轉下,藉著晶圓旋轉所帶動的氣流會影響到整個腔體內氣體的流動,因此增加氣體對流的效應。使晶圓表面受到氣體熱對流的熱損失均勻化,改善晶圓表面溫差,所以氧化層厚度也更均勻。
In this thesis,the oxidation of 300 mm silicon wafer in the RTP chamber are studied numerically.
During the oxidation processes, the wafer is heated by lamps from room temperature to the designated process temperature rapidly and maintain at that temperature thereafter. The radiative heat exchange between the wafer and heating lamps in the chamber, the conduction in the wafer and convection of oxygen are solved simultaneously.
The oxide growth rate follows the power-law relation x=s+at^b,where a and b are function of temperature and pressure. The effects of of several operational condtions, such as: heating lamps control, oxidation process temperature, the chamber pressure and the wafer rotatiingl speed, on the temperature distribution of the wafer and the oxide thickness uniformity are studied.
It is found that the oxide thickness uniformity depends strongly on the wafer surface temperature distribution. In comparison with the fixed-lamp-power process, the time-varying-lamp-power process typically results in better temperature uniformity, and thus better thickness uniformity. When the process temperature is raised, the oxide grows faster, but the oxide thickness uniformity suffers. Furthermore, the oxide thickness uniformity. In addition, the lower chamber pressure and the higher rotating speed of wafer usually achieve better oxide thickness uniformity.
1. J. V. Cole, K. L. Knutson, and K. F. Jensen, 1995,``Monte Carlo Simulation of Optical Temperature Sensors in RTP Systems,' Materials Research Society Symposium Proceedings, 387, pp. 143-148.
2. 嚴文燦 , 2003, ``快速熱處理製程中支撐架對晶圓溫度分布的效應,' 國立成功大學航空太空工程研究所.
3. B. E. Deal and A. S. Grove , 1965,``General Relationship for the Thermal Oxidation of Silicon,' Applied Physics Letters, Vol. 36 , pp. 3770-3778.
4. A. Reisman, E. H. Nicollian, C. K. Williams and C. J. Merz, 1986,``The Modelling of Silicon Oxidation from 1* 10^-5 to 20 Atmospheres,' Journal of Electronic Materials, Vol. 16, pp. 45-55.
5. M. A. F. Gomes, E. F. da Silva Jr and J. Albino Aguiar, 1995,``Growth kinetics of thermal SiO2 thin films,'Semiconductor Science and technology}, Vol. 10, pp. 1037-1039.
6. Keunjoo Kim, Young Hee Lee, Myung Hwan An, Moon Suhk Suh,Chang Joo Youn, Kee Bang Lee and Hyung Jae Lee ,``Growth Law of Silicon Oxides by Dry Oxidation," Semiconductor Science Technology, Vol. 11, pp. 1059-1064, 1996.
7. Kuang-Yao Peng, Long-Ching Wang, and John C. Slattery, "A New Theory for Silicon Oxidation," Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, pp. 3316-3320, 1996.
8. Eronides F da Silva Jr and Borko D Stosic, 1997,``Simulation of the early stages of thin SiO2 film growth,' Semiconductor Science Technology, Vol. 12, pp. 1038-1045.
9. I. Eisele, A. Ludsteck, J. Schulze, 2002,``Growth Modes and Characterization of Thin RTP Silicon Oxides,' IEEE International Conference on Advanced Thermal Processing of Semiconductors, pp. 11-14.
10. R. M. C. de Almeida, S. Goncalves, and I. J. R. Baumvol, 2000,``Dynamics of thermal growth of silicon oxide oxide films on Si,' Phyical Review B, Vol. 61, No. 19, pp. 12992-12999.
11. Siegel, R. and Howell, J. R.,Thermal Radiation Heat Transfer, 4rd edition, Taylor and Francis, New York, 2002.
12. Modest, M. F., Radiative Heat Transfer, 2rd edition, Academic, Amsterdam, 2003.
13. Touloukian, Y. S., Liely, P. E., and Saxena, S. C., Thermophysical Properties of Matter, vol. 3: Thermal Conductivity, Nonmetallic Liquids and Gases, IFI/Plenum, New York, 1970.
14. Touloukian, Y. S., and Makita, J., Thermophysical Properties of Matter, vol. 6: Specific Heat, Nonmetallic Gases and Liquids, IFI/Plenum, New York, 1970.
15. Touloukian, Y. S., Saxena, S. C., and Hestermasn, P., Thermophysical Properties of Matter, vol. 11: Viscosity, IFI/Plenum, New York, 1970.
16. Touloukian, Y. S. and Buyco, E. H., Thermophysical Properties of Matter, Vol. 5: Specific Heat, Nonmetallic Solids, IFI/Plenum , New York, 1970.
17. Touloukian, Y. S. and Powell, R. W., Thermophysical Properties of Matter, Vol. 2: Thermal Conductivity, Nonmetallic Solids, IFI/Plenum , New York, 1970.
18. 蘇俊傑, 2000, ``快速熱處理製程之晶圓加熱模擬分析," 第17屆, 中國機械工程學會, 高雄.
19. 紀崇仁 , 2002, ``晶圓快速熱處理模擬,' 國立成功大學機械工程研究所.
20. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere,Washington, D. C., 1980.
21. Patankar, S. V., Liu C. H., and Sparrow E. M., ``Fully developed flow and heat transfer in duct having streamwise-variations of cross-section areas," ASME Journal of Heat Transfer, Vol. 99, pp. 180-186, 1977.
22. R.L. Burden and J.D. Faires, Numerical Analysis, seventh edition, Brooks Cole, 2001.
23. S. M. Sze , VLSI Technology, second edition, McGraw-Hill, 1988.